Menu Close

a-b-40-a-b-20-amp-a-10-then-find-b-




Question Number 28695 by yesaditya22@gmail.com last updated on 29/Jan/18
∣a^→ +b^→ ∣=40,∣a^→ −b^→ ∣=20&∣a^→ ∣=10 then find∣b^→ ∣
$$\mid\overset{\rightarrow} {\mathrm{a}}+\overset{\rightarrow} {\mathrm{b}}\mid=\mathrm{40},\mid\overset{\rightarrow} {\mathrm{a}}−\overset{\rightarrow} {\mathrm{b}}\mid=\mathrm{20\&}\mid\overset{\rightarrow} {\mathrm{a}}\mid=\mathrm{10}\:\mathrm{then}\:\mathrm{find}\mid\overset{\rightarrow} {\mathrm{b}}\mid \\ $$
Answered by mrW2 last updated on 29/Jan/18
40^2 =a^2 +b^2 −2ab cos θ  20^2 =a^2 +b^2 −2ab cos (180−θ)  20^2 =a^2 +b^2 +2ab cos θ  b^2 =((40^2 +20^2 )/2)−a^2 =((40^2 +20^2 )/2)−10^2 =900  ⇒b=(√(900))=30
$$\mathrm{40}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\theta \\ $$$$\mathrm{20}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\left(\mathrm{180}−\theta\right) \\ $$$$\mathrm{20}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{cos}\:\theta \\ $$$${b}^{\mathrm{2}} =\frac{\mathrm{40}^{\mathrm{2}} +\mathrm{20}^{\mathrm{2}} }{\mathrm{2}}−{a}^{\mathrm{2}} =\frac{\mathrm{40}^{\mathrm{2}} +\mathrm{20}^{\mathrm{2}} }{\mathrm{2}}−\mathrm{10}^{\mathrm{2}} =\mathrm{900} \\ $$$$\Rightarrow{b}=\sqrt{\mathrm{900}}=\mathrm{30} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *