Menu Close

a-b-a-b-c-a-c-a-c-b-Solve-for-real-b-and-c-in-terms-of-real-a-




Question Number 43902 by ajfour last updated on 17/Sep/18
(√(a−b)) + (√(a+b)) = c  (√(a−c)) + (√(a+c)) = b  Solve for real b, and c ; in terms   of real a.
ab+a+b=cac+a+c=bSolveforrealb,andc;intermsofreala.
Commented by MrW3 last updated on 17/Sep/18
a≥2  b=c=2(√(a−1))
a2b=c=2a1
Commented by ajfour last updated on 17/Sep/18
This is certainly right sir;  no  other real answers even, Sir ?
Thisiscertainlyrightsir;nootherrealanswerseven,Sir?
Commented by LYCON TRIX last updated on 17/Sep/18
I′m impressed to see this question  I′ll make this question featured in NS7UC
ImimpressedtoseethisquestionIllmakethisquestionfeaturedinNS7UC
Commented by LYCON TRIX last updated on 17/Sep/18
what if I said that   Solve for a in terms of b and c   (a , b , c ) ∈ R
whatifIsaidthatSolveforaintermsofbandc(a,b,c)R
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Sep/18
b=acos2α   c=acos2β  (√(2a)) sinα+(√(2a))  cosα=acos2β  ((sinα+cosα)/(cos2β)).=(((√a) )/( (√2) ))  ((sinβ+cosβ)/(cos2α))=((√a)/( (√2)))  ((sinα+cosα)/(cos2β))=((sinβ+cosβ)/(cos2α))  (√(1+sin2α)) cos2α=(√(1+sin2β))  cos2β  (√(1+((2t_1 )/(1+t_1 ^2 ))))  ×((1−t_1 ^2 )/(1+t_1 ^2 ))=(√(1+((2t_2 )/(1+t_2 ^2 )))) ×((1−t_2 ^2 )/(1+t_2 ^2 ))  ((1+t_1 ×1−t_1 ^2 )/((1+t_1 ^2 )^(3/2) ))=((1+t_2 ^2 ×1−t_2 ^2 )/((1+t_2 )^(3/2) ))  (((1+t_1 )^2 ×(1−t_1 ))/((1+t_1 ^2 )^(3/2) ))=(((1+t_2 ^ )^2 ×(1−t_2 ))/((1+t_2 )^(3/2) ))  (((1+t_1 )/(1+t_2 )))^2 ×((1−t_1 )/(1−t_2 ))=(((1+t_1 ^2 )/(1+t_2 ^2 )))^(3/2)   t_1 =tanα   t_2 =tanβ  contd....
b=acos2αc=acos2β2asinα+2acosα=acos2βsinα+cosαcos2β.=a2sinβ+cosβcos2α=a2sinα+cosαcos2β=sinβ+cosβcos2α1+sin2αcos2α=1+sin2βcos2β1+2t11+t12×1t121+t12=1+2t21+t22×1t221+t221+t1×1t12(1+t12)32=1+t22×1t22(1+t2)32(1+t1)2×(1t1)(1+t12)32=(1+t2)2×(1t2)(1+t2)32(1+t11+t2)2×1t11t2=(1+t121+t22)32t1=tanαt2=tanβcontd.
Answered by ajfour last updated on 18/Sep/18
If a is to be found in terms  of b and c.  squaring first eq.   2a+2(√(a^2 −b^2 )) = c^2   squaring again  4a^2 −4b^2  = c^4 +4a^2 −4ac^2   ⇒   a = (c^2 /4)+(b^2 /c^2 )   similarly from second eq.           a = (b^2 /4)+(c^2 /b^2 )  ⇒  a = (c^2 /4)+(b^2 /c^2 ) = (b^2 /4)+(c^2 /b^2 )   ...(i)  ⇒   ((c^2 −b^2 )/4) = (((c^2 −b^2 )(c^2 +b^2 ))/(b^2 c^2 ))  Two cases arise:  If b^2 = c^2  , then       a = 1+(b^2 /4) = 1+(c^2 /4)  If b^2 ≠ c^2   ⇒   b^2 +c^2  = ((b^2 c^2 )/4)  , then using (i)     2a = ((b^2 +c^2 )/4) + ((b^4 +c^4 )/(b^2 c^2 ))  ⇒ 2a = ((b^2 +c^2 )/4) + (((b^2 +c^2 )^2 −2b^2 c^2 )/(b^2 c^2 ))        2a = ((b^2 c^2 )/(16))+((b^4 c^4 )/(16b^2 c^2 ))−2  ⇒    a = ((b^2 c^2 )/(16))−1 = ((b^2 +c^2 )/4)−1 .
\boldsymbolIf\boldsymbola\boldsymbolis\boldsymbolto\boldsymbolbe\boldsymbolfound\boldsymbolin\boldsymbolterms\boldsymbolof\boldsymbolb\boldsymboland\boldsymbolc.squaringfirsteq.2a+2a2b2=c2squaringagain4a24b2=c4+4a24ac2a=c24+b2c2similarlyfromsecondeq.a=b24+c2b2a=c24+b2c2=b24+c2b2(\boldsymboli)c2b24=(c2b2)(c2+b2)b2c2Twocasesarise:Ifb2=c2,then\boldsymbola=1+\boldsymbolb24=1+\boldsymbolc24Ifb2c2b2+c2=b2c24,thenusing(i)2\boldsymbola=b2+c24+b4+c4b2c22a=b2+c24+(b2+c2)22b2c2b2c22a=b2c216+b4c416b2c22a=b2c2161=b2+c241.

Leave a Reply

Your email address will not be published. Required fields are marked *