Question Number 43902 by ajfour last updated on 17/Sep/18
$$\sqrt{{a}−{b}}\:+\:\sqrt{{a}+{b}}\:=\:{c} \\ $$$$\sqrt{{a}−{c}}\:+\:\sqrt{{a}+{c}}\:=\:{b} \\ $$$${Solve}\:{for}\:{real}\:{b},\:{and}\:{c}\:;\:{in}\:{terms}\: \\ $$$${of}\:{real}\:{a}. \\ $$
Commented by MrW3 last updated on 17/Sep/18
$${a}\geqslant\mathrm{2} \\ $$$${b}={c}=\mathrm{2}\sqrt{{a}−\mathrm{1}} \\ $$
Commented by ajfour last updated on 17/Sep/18
$${This}\:{is}\:{certainly}\:{right}\:{sir};\:\:{no} \\ $$$${other}\:{real}\:{answers}\:{even},\:{Sir}\:? \\ $$
Commented by LYCON TRIX last updated on 17/Sep/18
$$\mathrm{I}'\mathrm{m}\:\mathrm{impressed}\:\mathrm{to}\:\mathrm{see}\:\mathrm{this}\:\mathrm{question} \\ $$$$\mathrm{I}'\mathrm{ll}\:\mathrm{make}\:\mathrm{this}\:\mathrm{question}\:\mathrm{featured}\:\mathrm{in}\:\mathrm{NS7UC} \\ $$
Commented by LYCON TRIX last updated on 17/Sep/18
$$\mathrm{what}\:\mathrm{if}\:\mathrm{I}\:\mathrm{said}\:\mathrm{that}\: \\ $$$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{a}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{b}\:\mathrm{and}\:\mathrm{c}\: \\ $$$$\left(\mathrm{a}\:,\:\mathrm{b}\:,\:\mathrm{c}\:\right)\:\in\:\mathrm{R} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Sep/18
$${b}={acos}\mathrm{2}\alpha\:\:\:{c}={acos}\mathrm{2}\beta \\ $$$$\sqrt{\mathrm{2}{a}}\:{sin}\alpha+\sqrt{\mathrm{2}{a}}\:\:{cos}\alpha={acos}\mathrm{2}\beta \\ $$$$\frac{{sin}\alpha+{cos}\alpha}{{cos}\mathrm{2}\beta}.=\frac{\sqrt{{a}}\:}{\:\sqrt{\mathrm{2}}\:} \\ $$$$\frac{{sin}\beta+{cos}\beta}{{cos}\mathrm{2}\alpha}=\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{2}}} \\ $$$$\frac{{sin}\alpha+{cos}\alpha}{{cos}\mathrm{2}\beta}=\frac{{sin}\beta+{cos}\beta}{{cos}\mathrm{2}\alpha} \\ $$$$\sqrt{\mathrm{1}+{sin}\mathrm{2}\alpha}\:{cos}\mathrm{2}\alpha=\sqrt{\mathrm{1}+{sin}\mathrm{2}\beta}\:\:{cos}\mathrm{2}\beta \\ $$$$\sqrt{\mathrm{1}+\frac{\mathrm{2}{t}_{\mathrm{1}} }{\mathrm{1}+{t}_{\mathrm{1}} ^{\mathrm{2}} }}\:\:×\frac{\mathrm{1}−{t}_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{1}+{t}_{\mathrm{1}} ^{\mathrm{2}} }=\sqrt{\mathrm{1}+\frac{\mathrm{2}{t}_{\mathrm{2}} }{\mathrm{1}+{t}_{\mathrm{2}} ^{\mathrm{2}} }}\:×\frac{\mathrm{1}−{t}_{\mathrm{2}} ^{\mathrm{2}} }{\mathrm{1}+{t}_{\mathrm{2}} ^{\mathrm{2}} } \\ $$$$\frac{\mathrm{1}+{t}_{\mathrm{1}} ×\mathrm{1}−{t}_{\mathrm{1}} ^{\mathrm{2}} }{\left(\mathrm{1}+{t}_{\mathrm{1}} ^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }=\frac{\mathrm{1}+{t}_{\mathrm{2}} ^{\mathrm{2}} ×\mathrm{1}−{t}_{\mathrm{2}} ^{\mathrm{2}} }{\left(\mathrm{1}+{t}_{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$$\frac{\left(\mathrm{1}+{t}_{\mathrm{1}} \right)^{\mathrm{2}} ×\left(\mathrm{1}−{t}_{\mathrm{1}} \right)}{\left(\mathrm{1}+{t}_{\mathrm{1}} ^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }=\frac{\left(\mathrm{1}+{t}_{\mathrm{2}} ^{} \right)^{\mathrm{2}} ×\left(\mathrm{1}−{t}_{\mathrm{2}} \right)}{\left(\mathrm{1}+{t}_{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$$\left(\frac{\mathrm{1}+{t}_{\mathrm{1}} }{\mathrm{1}+{t}_{\mathrm{2}} }\right)^{\mathrm{2}} ×\frac{\mathrm{1}−{t}_{\mathrm{1}} }{\mathrm{1}−{t}_{\mathrm{2}} }=\left(\frac{\mathrm{1}+{t}_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{1}+{t}_{\mathrm{2}} ^{\mathrm{2}} }\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$${t}_{\mathrm{1}} ={tan}\alpha\:\:\:{t}_{\mathrm{2}} ={tan}\beta \\ $$$${contd}…. \\ $$$$ \\ $$
Answered by ajfour last updated on 18/Sep/18
$$\boldsymbol{{If}}\:\boldsymbol{{a}}\:\boldsymbol{{is}}\:\boldsymbol{{to}}\:\boldsymbol{{be}}\:\boldsymbol{{found}}\:\boldsymbol{{in}}\:\boldsymbol{{terms}} \\ $$$$\boldsymbol{{of}}\:\boldsymbol{{b}}\:\boldsymbol{{and}}\:\boldsymbol{{c}}. \\ $$$${squaring}\:{first}\:{eq}.\: \\ $$$$\mathrm{2}{a}+\mathrm{2}\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\:=\:{c}^{\mathrm{2}} \\ $$$${squaring}\:{again} \\ $$$$\mathrm{4}{a}^{\mathrm{2}} −\mathrm{4}{b}^{\mathrm{2}} \:=\:{c}^{\mathrm{4}} +\mathrm{4}{a}^{\mathrm{2}} −\mathrm{4}{ac}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:{a}\:=\:\frac{{c}^{\mathrm{2}} }{\mathrm{4}}+\frac{{b}^{\mathrm{2}} }{{c}^{\mathrm{2}} }\: \\ $$$${similarly}\:{from}\:{second}\:{eq}. \\ $$$$\:\:\:\:\:\:\:\:\:{a}\:=\:\frac{{b}^{\mathrm{2}} }{\mathrm{4}}+\frac{{c}^{\mathrm{2}} }{{b}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:{a}\:=\:\frac{{c}^{\mathrm{2}} }{\mathrm{4}}+\frac{{b}^{\mathrm{2}} }{{c}^{\mathrm{2}} }\:=\:\frac{{b}^{\mathrm{2}} }{\mathrm{4}}+\frac{{c}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:\:\:…\left(\boldsymbol{{i}}\right) \\ $$$$\Rightarrow\:\:\:\frac{{c}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{4}}\:=\:\frac{\left({c}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left({c}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)}{{b}^{\mathrm{2}} {c}^{\mathrm{2}} } \\ $$$${Two}\:{cases}\:{arise}: \\ $$$${If}\:{b}^{\mathrm{2}} =\:{c}^{\mathrm{2}} \:,\:{then} \\ $$$$\:\:\:\:\:\boldsymbol{{a}}\:=\:\mathrm{1}+\frac{\boldsymbol{{b}}^{\mathrm{2}} }{\mathrm{4}}\:=\:\mathrm{1}+\frac{\boldsymbol{{c}}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${If}\:{b}^{\mathrm{2}} \neq\:{c}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \:=\:\frac{{b}^{\mathrm{2}} {c}^{\mathrm{2}} }{\mathrm{4}}\:\:,\:{then}\:{using}\:\left({i}\right) \\ $$$$\:\:\:\mathrm{2}\boldsymbol{{a}}\:=\:\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{4}}\:+\:\frac{{b}^{\mathrm{4}} +{c}^{\mathrm{4}} }{{b}^{\mathrm{2}} {c}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\mathrm{2}{a}\:=\:\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{4}}\:+\:\frac{\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} {c}^{\mathrm{2}} }{{b}^{\mathrm{2}} {c}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\mathrm{2}{a}\:=\:\frac{{b}^{\mathrm{2}} {c}^{\mathrm{2}} }{\mathrm{16}}+\frac{{b}^{\mathrm{4}} {c}^{\mathrm{4}} }{\mathrm{16}{b}^{\mathrm{2}} {c}^{\mathrm{2}} }−\mathrm{2} \\ $$$$\Rightarrow\:\:\:\:{a}\:=\:\frac{{b}^{\mathrm{2}} {c}^{\mathrm{2}} }{\mathrm{16}}−\mathrm{1}\:=\:\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{4}}−\mathrm{1}\:. \\ $$