Menu Close

a-b-are-complex-numbers-and-a-2-ab-b-2-0-find-a-a-b-2020-b-a-b-2020-




Question Number 88314 by M±th+et£s last updated on 09/Apr/20
( a,b )are complex numbers and a^2 +ab+b^2 =0  find ((a/(a+b)))^(2020) +((b/(a+b)))^(2020)
(a,b)arecomplexnumbersanda2+ab+b2=0find(aa+b)2020+(ba+b)2020
Commented by mathmax by abdo last updated on 09/Apr/20
a is slution of x^2  +bx +b^2 =0  Δ=b^2 −4b^2  =−3b^2  =(i(√3)b)^2  ⇒x_1 =((−b+i(√3)b)/2) =b e^((i2π)/3)   and x_2 =((−b−i(√b))/2)=be^(−((i2π)/3))   a=x_1  ⇒(a/(a+b)) =((b e^((i2π)/3) )/(be^((i2π)/3)  +b)) =(e^((i2π)/3) /(1+e^((i2π)/3) )) =(1/(1+e^(−((i2π)/3)) )) =(1/(1−(1/2)−((i(√3))/2)))= =(1/((1/2)−((i(√3))/2)))=e^((iπ)/3)   (b/(a+b)) =(b/(be^((i2π)/3)  +b)) =(1/(e^((i2π)/3)  +1)) =(1/(1−(1/2)+((i(√3))/2))) =(1/((1/2)+((i(√3))/2))) =e^(−((iπ)/3))  ⇒  ((a/(a+b)))^(2020) +((b/(a+b)))^(2020)  =(e^((iπ)/3) )^(2020) +(e^(−((iπ)/3)) )^(2020)   =2cos(((2020π)/3)) this value can be simplified...  wr find the same value for x =x_2
aisslutionofx2+bx+b2=0Δ=b24b2=3b2=(i3b)2x1=b+i3b2=bei2π3andx2=bib2=bei2π3a=x1aa+b=bei2π3bei2π3+b=ei2π31+ei2π3=11+ei2π3=1112i32==112i32=eiπ3ba+b=bbei2π3+b=1ei2π3+1=1112+i32=112+i32=eiπ3(aa+b)2020+(ba+b)2020=(eiπ3)2020+(eiπ3)2020=2cos(2020π3)thisvaluecanbesimplifiedwrfindthesamevalueforx=x2
Answered by MJS last updated on 09/Apr/20
a^2 +ab+b^2 =0  ⇒ b=a(−(1/2)±((√3)/2)i)  ⇒ (a/(a+b))=(1/2)∓((√3)/2)i ∧ (b/(a+b))=(1/2)±((√3)/2)i  ⇒ ((a/(a+b)))^n +((b/(a+b)))^n =e^(−i((nπ)/3)) +e^(i((nπ)/3))   now you should be able to find the answer
a2+ab+b2=0b=a(12±32i)aa+b=1232iba+b=12±32i(aa+b)n+(ba+b)n=einπ3+einπ3nowyoushouldbeabletofindtheanswer
Commented by M±th+et£s last updated on 09/Apr/20
thanx sir . i think ans=−1
thanxsir.ithinkans=1
Commented by MJS last updated on 09/Apr/20
yes
yes
Answered by Joel578 last updated on 10/Apr/20
(a + b)^2  − ab = 0 ⇒ (a + b)^2  = ab ⇒ ((ab)/((a + b)^2 )) = 1  ⇒ ((a/(a + b)) )((b/(a + b))) = 1    ((a/(a + b))) + ((b/(a + b))) = ((a + b)/(a + b)) = 1    Let x = (a/(a + b)), y = (b/(a + b)) with xy = 1, x + y  = 1  Define f(n) = x^n  + y^n   f(1) = x + y = 1  f(2) = x^2  + y^2  = (x + y)^2  − 2xy = −1  f(3) = x^3  + y^3  = (x + y)^3  − 3xy(x + y) = −2  f(4) = x^4  + y^4  = (x^3  + y^3 )(x + y) − xy(x^2  + y^2 ) = −1  f(5) = 1, f(6) = 2, f(7) = 1, f(8) = −1, f(9) = −2  f(n) = f(n+6)  ∴ f(2020) = f(4) = −1
(a+b)2ab=0(a+b)2=abab(a+b)2=1(aa+b)(ba+b)=1(aa+b)+(ba+b)=a+ba+b=1Letx=aa+b,y=ba+bwithxy=1,x+y=1Definef(n)=xn+ynf(1)=x+y=1f(2)=x2+y2=(x+y)22xy=1f(3)=x3+y3=(x+y)33xy(x+y)=2f(4)=x4+y4=(x3+y3)(x+y)xy(x2+y2)=1f(5)=1,f(6)=2,f(7)=1,f(8)=1,f(9)=2f(n)=f(n+6)f(2020)=f(4)=1
Commented by Joel578 last updated on 10/Apr/20
without complex method
withoutcomplexmethod

Leave a Reply

Your email address will not be published. Required fields are marked *