Question Number 187076 by Humble last updated on 13/Feb/23
$$\frac{{a}}{{b}}+\frac{{b}}{{a}}=\mathrm{5}\:\:;\:\frac{{a}^{\mathrm{2}} }{{b}}+\frac{{b}^{\mathrm{2}} }{{a}}\:=\mathrm{12} \\ $$$$\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}=? \\ $$
Answered by Rasheed.Sindhi last updated on 13/Feb/23
$$\frac{{a}}{{b}}+\frac{{b}}{{a}}=\mathrm{5}\:\:;\:\frac{{a}^{\mathrm{2}} }{{b}}+\frac{{b}^{\mathrm{2}} }{{a}}\:=\mathrm{12}\:\:;\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}=? \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{5}{ab}\:;\:{a}^{\mathrm{3}} +{b}^{\mathrm{3}} =\mathrm{12}{ab} \\ $$$$\left({a}+{b}\right)^{\mathrm{2}} =\mathrm{7}{ab}\:;\:\left({a}+{b}\right)^{\mathrm{3}} =\mathrm{12}{ab}+\mathrm{3}{ab}\left({a}+{b}\right) \\ $$$${a}+{b}=\frac{{ab}\left(\mathrm{12}+\mathrm{3}\left({a}+{b}\right)\right)}{\mathrm{7}{ab}} \\ $$$${a}+{b}=\frac{\mathrm{12}}{\mathrm{7}}+\frac{\mathrm{3}}{\mathrm{7}}\left({a}+{b}\right) \\ $$$$\mathrm{7}\left({a}+{b}\right)−\mathrm{3}\left({a}+{b}\right)=\mathrm{12} \\ $$$${a}+{b}=\mathrm{12}/\mathrm{4}=\mathrm{3} \\ $$$${ab}=\frac{\left({a}+{b}\right)^{\mathrm{2}} }{\mathrm{7}}=\frac{\mathrm{3}^{\mathrm{2}} }{\mathrm{7}}=\frac{\mathrm{9}}{\mathrm{7}} \\ $$$$\frac{{a}+{b}}{{ab}}=\frac{\mathrm{3}}{\mathrm{9}/\mathrm{7}}=\mathrm{3}×\frac{\mathrm{7}}{\mathrm{9}}=\frac{\mathrm{7}}{\mathrm{3}} \\ $$$$\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}=\frac{\mathrm{7}}{\mathrm{3}} \\ $$
Commented by BaliramKumar last updated on 13/Feb/23
$${step}\mathrm{3} \\ $$$${devid}\:{will}\:{be}\:\mathrm{7}{ab} \\ $$
Commented by Rasheed.Sindhi last updated on 13/Feb/23
$$\mathcal{T}{han}\mathcal{X}\:{Baliram}.{I}'{ve}\:{corrected}. \\ $$
Commented by Humble last updated on 13/Feb/23
$${thank}\:{you}\:{sir} \\ $$
Answered by HeferH last updated on 13/Feb/23
$$\:\frac{{b}}{{a}}\:+\:\frac{{b}}{{a}}\:=\:\mathrm{5}\:\Rightarrow \\ $$$$\:{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:=\:\mathrm{5}{ab} \\ $$$$\:\frac{{a}^{\mathrm{2}} }{{b}}\:+\:\frac{{b}^{\mathrm{2}} }{{a}}\:=\:\mathrm{12}\:\Rightarrow \\ $$$$\:{a}^{\mathrm{3}} \:+\:{b}^{\mathrm{3}} \:=\mathrm{12}{ab} \\ $$$$\:\left({a}\:+\:{b}\right)\left({a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:−{ab}\right)\:=\:\mathrm{12}{ab} \\ $$$$\:\left({a}\:+\:{b}\right)\left(\mathrm{5}{ab}\:−{ab}\right)\:=\:\mathrm{12}{ab} \\ $$$$\:{a}\:+\:{b}\:=\:\mathrm{3} \\ $$$$\:\left({a}\:+\:{b}\right)^{\mathrm{2}} \:=\:\mathrm{3}^{\mathrm{2}} \\ $$$$\:{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}\:} \:+\:\mathrm{2}{ab}\:=\:\mathrm{9} \\ $$$$\:\mathrm{5}{ab}\:+\:\mathrm{2}{ab}\:=\:\mathrm{9}\: \\ $$$$\:{ab}\:=\:\frac{\mathrm{9}}{\mathrm{7}}\:\Rightarrow \\ $$$$\:\frac{\mathrm{1}}{{a}}\:+\:\frac{\mathrm{1}}{{b}}\:=\:\frac{{a}\:+\:{b}}{{ab}}\:=\:\frac{\mathrm{3}}{\frac{\mathrm{9}}{\mathrm{7}}}\:=\:\mathrm{3}\centerdot\frac{\mathrm{7}}{\mathrm{9}\:}\:=\:\frac{\mathrm{7}}{\mathrm{3}} \\ $$
Commented by Humble last updated on 13/Feb/23
$${thank}\:{you},\:{sir} \\ $$
Answered by Rasheed.Sindhi last updated on 13/Feb/23
$$\underset{\left({i}\right)} {\underbrace{\frac{{a}}{{b}}+\frac{{b}}{{a}}=\mathrm{5}}}\:\:;\:\underset{\left({ii}\right)} {\underbrace{\frac{{a}^{\mathrm{2}} }{{b}}+\frac{{b}^{\mathrm{2}} }{{a}}\:=\mathrm{12}}}\:;\:\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}=? \\ $$$$\left({i}\right)\Rightarrow{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{5}{ab}\: \\ $$$$\left({ii}\right)\Rightarrow{a}^{\mathrm{3}} +{b}^{\mathrm{3}} =\mathrm{12}{ab} \\ $$$$\left({i}\right)\Rightarrow{a}^{\mathrm{2}} −{ab}+{b}^{\mathrm{2}} =\mathrm{4}{ab} \\ $$$$\left({a}+{b}\right)\left({a}^{\mathrm{2}} −{ab}+{b}^{\mathrm{2}} =\mathrm{4}{ab}\left({a}+{b}\right)\right. \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} =\mathrm{4}{ab}\left({a}+{b}\right) \\ $$$$\mathrm{12}{ab}=\mathrm{4}{ab}\left({a}+{b}\right) \\ $$$${a}+{b}=\mathrm{3}….\left({iii}\right) \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{5}{ab} \\ $$$${a}^{\mathrm{2}} +\mathrm{2}{ab}+{b}^{\mathrm{2}} =\mathrm{7}{ab} \\ $$$${ab}=\frac{\left({a}+{b}\right)^{\mathrm{2}} }{\mathrm{7}}=\frac{\mathrm{3}^{\mathrm{2}} }{\mathrm{7}}=\frac{\mathrm{9}}{\mathrm{7}}….\left({iv}\right) \\ $$$$\left({iii}\right)/\left({iv}\right):\:\frac{{a}+{b}}{{ab}}=\mathrm{3}/\left(\frac{\mathrm{9}}{\mathrm{7}}\right)=\mathrm{3}×\frac{\mathrm{7}}{\mathrm{9}}=\frac{\mathrm{7}}{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}=\frac{\mathrm{7}}{\mathrm{3}} \\ $$
Commented by Humble last updated on 14/Feb/23
$${thank}\:{you},\:{sir} \\ $$