Question Number 65457 by behi83417@gmail.com last updated on 30/Jul/19
$$\begin{cases}{\frac{\boldsymbol{\mathrm{a}}}{\boldsymbol{\mathrm{b}}}+\frac{\boldsymbol{\mathrm{b}}−\boldsymbol{\mathrm{a}}}{\boldsymbol{\mathrm{b}}+\boldsymbol{\mathrm{a}}}=\mathrm{2}\sqrt{\mathrm{3}}}\\{\frac{\boldsymbol{\mathrm{b}}}{\boldsymbol{\mathrm{a}}}+\frac{\boldsymbol{\mathrm{b}}+\boldsymbol{\mathrm{a}}}{\boldsymbol{\mathrm{b}}−\boldsymbol{\mathrm{a}}}=\mathrm{3}\sqrt{\mathrm{2}}}\end{cases}\:\:\:\:\:\left[\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}}\in\boldsymbol{\mathrm{R}},\boldsymbol{\mathrm{a}}\neq\boldsymbol{\mathrm{b}}\right] \\ $$
Answered by mr W last updated on 30/Jul/19
$${let}\:{t}=\frac{{a}}{{b}} \\ $$$${eqn}.\:\mathrm{1}\:\Rightarrow{t}+\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}=\mathrm{2}\sqrt{\mathrm{3}}\:\:\:\:\:\:…\left({i}\right) \\ $$$${eqn}.\:\mathrm{2}\:\Rightarrow\frac{\mathrm{1}}{{t}}+\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}=\mathrm{3}\sqrt{\mathrm{2}}\:\:\:\:…\left({ii}\right) \\ $$$$\left({i}\right): \\ $$$${t}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{3}}{t}−\left(\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{1}\right)=\mathrm{0} \\ $$$${t}=\sqrt{\mathrm{3}}\pm\sqrt{\mathrm{2}\left(\sqrt{\mathrm{3}}+\mathrm{1}\right)}\:\leftarrow{real} \\ $$$$ \\ $$$$\left({ii}\right): \\ $$$$\mathrm{1}−{t}+{t}^{\mathrm{2}} +{t}=\mathrm{3}\sqrt{\mathrm{2}}\left({t}−{t}^{\mathrm{2}} \right) \\ $$$$\left(\mathrm{1}+\mathrm{3}\sqrt{\mathrm{2}}\right){t}^{\mathrm{2}} −\mathrm{3}\sqrt{\mathrm{2}}{t}+\mathrm{1}=\mathrm{0} \\ $$$${t}=\frac{\mathrm{3}\sqrt{\mathrm{2}}\pm\sqrt{\mathrm{2}\left(\mathrm{7}−\mathrm{6}\sqrt{\mathrm{2}}\right)}}{\mathrm{2}\left(\mathrm{1}+\mathrm{3}\sqrt{\mathrm{2}}\right)}\:\leftarrow{not}\:{real} \\ $$$$ \\ $$$$\Rightarrow{no}\:{solution}! \\ $$
Commented by behi83417@gmail.com last updated on 30/Jul/19
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{dear}\:\mathrm{master}. \\ $$