Menu Close

a-b-c-0-Prove-that-a-a-2-bc-b-b-2-ca-c-c-2-ab-0-




Question Number 191615 by MATHEMATICSAM last updated on 27/Apr/23
a + b + c = 0. Prove that,  (a/(a^2  − bc)) + (b/(b^2  − ca)) + (c/(c^2  − ab)) = 0.
$${a}\:+\:{b}\:+\:{c}\:=\:\mathrm{0}.\:\mathrm{Prove}\:\mathrm{that}, \\ $$$$\frac{{a}}{{a}^{\mathrm{2}} \:−\:{bc}}\:+\:\frac{{b}}{{b}^{\mathrm{2}} \:−\:{ca}}\:+\:\frac{{c}}{{c}^{\mathrm{2}} \:−\:{ab}}\:=\:\mathrm{0}. \\ $$
Answered by som(math1967) last updated on 27/Apr/23
 a+b+c=0  ⇒a^2 =−ab−ca  b^2 =−bc−ab, c^2 =−ca−bc  (a/(a^2 −bc))+(b/(b^2 −ca))+(c/(c^2 −ab))  =(a/(−(ab+bc+ca)))+(b/(−(ab+bc+ca)))    +(c/(−(ab+bc+ca)))  =((a+b+c)/(−(ab+bc+ca)))=(0/(−(ab+bc+ca)))=0
$$\:{a}+{b}+{c}=\mathrm{0} \\ $$$$\Rightarrow{a}^{\mathrm{2}} =−{ab}−{ca} \\ $$$${b}^{\mathrm{2}} =−{bc}−{ab},\:{c}^{\mathrm{2}} =−{ca}−{bc} \\ $$$$\frac{{a}}{{a}^{\mathrm{2}} −{bc}}+\frac{{b}}{{b}^{\mathrm{2}} −{ca}}+\frac{{c}}{{c}^{\mathrm{2}} −{ab}} \\ $$$$=\frac{{a}}{−\left({ab}+{bc}+{ca}\right)}+\frac{{b}}{−\left({ab}+{bc}+{ca}\right)} \\ $$$$\:\:+\frac{{c}}{−\left({ab}+{bc}+{ca}\right)} \\ $$$$=\frac{{a}+{b}+{c}}{−\left({ab}+{bc}+{ca}\right)}=\frac{\mathrm{0}}{−\left({ab}+{bc}+{ca}\right)}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *