Menu Close

a-b-c-1-a-2-b-2-c-2-1-a-3-b-3-c-3-1-a-b-c-




Question Number 147116 by Rasheed.Sindhi last updated on 18/Jul/21
a+b+c=1  a^2 +b^2 +c^2 =1  a^3 +b^3 +c^3 =1  a , b , c =?
a+b+c=1a2+b2+c2=1a3+b3+c3=1a,b,c=?
Commented by mr W last updated on 18/Jul/21
(a,b,c)=(0,0,1)  we can get ab+bc+ca=0, abc=0,  therefore a,b,c are roots of  x^3 −x^2 +0x+0=0 ⇒x^2 (x−1)=0   ⇒x∈(0,0,1)
(a,b,c)=(0,0,1)wecangetab+bc+ca=0,abc=0,thereforea,b,carerootsofx3x2+0x+0=0x2(x1)=0x(0,0,1)
Commented by Rasheed.Sindhi last updated on 18/Jul/21
Sir I ′ve tried to solve in a different  way in which 2 also appears as a  root. I know this can′t satisfy the  system.But then I can′t deside   whether it′s extraneous root because  I haven′t squared any equation.  Please see my solution and guide  me as  you always do.
SirIvetriedtosolveinadifferentwayinwhich2alsoappearsasaroot.Iknowthiscantsatisfythesystem.ButthenIcantdesidewhetheritsextraneousrootbecauseIhaventsquaredanyequation.Pleaseseemysolutionandguidemeasyoualwaysdo.
Commented by Rasheed.Sindhi last updated on 18/Jul/21
Sorry sir I found my error when  I solved it this time!  Thanks Sir.
SorrysirIfoundmyerrorwhenIsolveditthistime!ThanksSir.
Commented by mr W last updated on 18/Jul/21
i think you also get the right answer  in that way. you get c=1 then a+b=0  and ab=0, i.e. a=b=0. or c=0 then  a+b=1 and ab=0, i.e. a=1, b=0 or  a=0, b=1.
ithinkyoualsogettherightanswerinthatway.yougetc=1thena+b=0andab=0,i.e.a=b=0.orc=0thena+b=1andab=0,i.e.a=1,b=0ora=0,b=1.
Commented by Rasheed.Sindhi last updated on 18/Jul/21
ThanX for this nice trick Sir,  I didn′t think of that.
ThanXforthisnicetrickSir,Ididntthinkofthat.
Answered by Olaf_Thorendsen last updated on 18/Jul/21
a+b+c = 1  a^2 +b^2 +c^2  = 1  a^3 +b^3 +c^3  = 1    a^2 +b^2 +c^2  = (a+b+c)^2 −2(ab+bc+ca)  1 = 1−2(ab+bc+ca)  ab+bc+ca = 0    a^3 +b^3 +c^3  = (a+b+c)(a^2 +b^2 +c^2 )  −(ab^2 +ac^2 +a^2 b+bc^2 +a^2 c+b^2 c)    1 = 1×1−(ab^2 +ac^2 +a^2 b+bc^2 +a^2 c+b^2 c)    0 = a(ab+ca)+b(ab+bc)+c(bc+ca)  0 = a(−bc)+b(−ca)+c(−ab)  abc = 0  we verify that a = 0 ⇒ b = 0 and c = 1  or b = 1 and c = 0    S = {(1,0,0) ; (0,1,0) ; (0,0,1)}
a+b+c=1a2+b2+c2=1a3+b3+c3=1a2+b2+c2=(a+b+c)22(ab+bc+ca)1=12(ab+bc+ca)ab+bc+ca=0a3+b3+c3=(a+b+c)(a2+b2+c2)(ab2+ac2+a2b+bc2+a2c+b2c)1=1×1(ab2+ac2+a2b+bc2+a2c+b2c)0=a(ab+ca)+b(ab+bc)+c(bc+ca)0=a(bc)+b(ca)+c(ab)abc=0weverifythata=0b=0andc=1orb=1andc=0S={(1,0,0);(0,1,0);(0,0,1)}
Commented by Rasheed.Sindhi last updated on 18/Jul/21
Thanks Sir Olaf! I always appreciate  your precious contribution towards this  forum!
ThanksSirOlaf!Ialwaysappreciateyourpreciouscontributiontowardsthisforum!
Answered by Rasheed.Sindhi last updated on 18/Jul/21
a+b+c=a^2 +b^2 +c^2 =a^3 +b^3 +c^3 =1_(−) ;a,b,c=?  (i)⇒a+b=1−c  (ii)⇒(a+b)^2 −2ab+c^2 −1=0           (1−c)^2 −2ab+c^2 −1=0           ab=((1−2c+c^2 +c^2 −1)/2)=c^2 −c...A  (iii)⇒(a+b)^3 −3ab(a+b)+c^3 −1=0        (1−c)^3 −3ab(1−c)−(1−c^3 )=0   (1−c){(1−c)^2 −3ab−(1+c+c^2 )}=0  c=1 ∨ 1−2c+c^2 −3ab−1−c−c^2 =0                    ab=−c...........................B  A & B :   c^2 −c=−c                     c^2 =0⇒c=0  Observing symmetric nature of  the system we can fix same values  for a & b.  •   •^(•)  (a,b,c)=(1,0,0) , (0,1,0) , (0,0,1)
a+b+c=a2+b2+c2=a3+b3+c3=1;a,b,c=?(i)a+b=1c(ii)(a+b)22ab+c21=0(1c)22ab+c21=0ab=12c+c2+c212=c2cA(iii)(a+b)33ab(a+b)+c31=0(1c)33ab(1c)(1c3)=0(1c){(1c)23ab(1+c+c2)}=0c=1\cancel12c+\cancelc23ab\cancel1c\cancelc2=0ab=cBA&B:c2c=cc2=0c=0Observingsymmetricnatureofthesystemwecanfixsamevaluesfora&b.(a,b,c)=(1,0,0),(0,1,0),(0,0,1)

Leave a Reply

Your email address will not be published. Required fields are marked *