Menu Close

a-b-c-a-a-2-b-2-c-2-a-a-2-b-2-c-2-prove-




Question Number 59861 by ANTARES VY last updated on 15/May/19
(√(a+b(√c)))=(√((a+(√(a^2 −b^2 c)))/2))+(√((a−(√(a^2 −b^2 c)))/2)).  prove
a+bc=a+a2b2c2+aa2b2c2.prove
Commented by Kunal12588 last updated on 15/May/19
Commented by Kunal12588 last updated on 15/May/19
just put “ b^2 c ” in place of “ b ”
justputb2cinplaceofb
Answered by tanmay last updated on 15/May/19
((a+(√(a^2 −b^2 c)))/2)  =((2a+2(√((a+b(√c) )(a−b(√c) ))))/4)  =((a+b(√c) +a−b(√c) +2(√((a+b(√(c)(a−b(√(c))) )))))/4)  =((((√(a+b(√c) )) )^2 +((√(a−b(√c) )) )^2 +2(√((a+b(√c) )(a−b(√(c))) )))/4)  =(([(√(a+b(√c))) +(√(a−b(√c)  )) ]^2 )/2^2 )  so  (√((a+(√(a^2 −b^2 c)))/2)) +(√((a−(√(a^2 −b^2 c)))/2))   =(((√(a+b(√c) )) +(√(a−b(√c))) )/2)+(((√(a+b(√c))) −(√(a−b(√c))) )/2)  =(√(a+b(√c)))
a+a2b2c2=2a+2(a+bc)(abc)4=a+bc+abc+2(a+bc)(abc)4=(a+bc)2+(abc)2+2(a+bc)(abc)4=[a+bc+abc]222soa+a2b2c2+aa2b2c2=a+bc+abc2+a+bcabc2=a+bc
Answered by Kunal12588 last updated on 15/May/19
let (√(a+b(√c)))=(√m)+(√n)     (1)  ⇒a+(√(b^2 c))=m+n+2(√(mn))  ⇒m+n=a , 4mn=b^2 c  ⇒m−n=(√((m+n)^2 −4mn))=(√(a^2 −b^2 c))  ⇒m=((a+(√(a^2 −b^2 c)))/2) , n=((a−(√(a^2 −b^2 c)))/2)  from (1)  (√(a+b(√c)))=(√m)+(√n)  ⇒(√(a+b(√c)))=(√((a+(√(a^2 −b^2 c)))/2))+(√((a−(√(a^2 −b^2 c)))/2))  proved
leta+bc=m+n(1)a+b2c=m+n+2mnm+n=a,4mn=b2cmn=(m+n)24mn=a2b2cm=a+a2b2c2,n=aa2b2c2from(1)a+bc=m+na+bc=a+a2b2c2+aa2b2c2proved

Leave a Reply

Your email address will not be published. Required fields are marked *