Menu Close

a-b-c-are-in-G-P-If-a-x-b-y-c-z-prove-that-1-x-1-z-are-in-A-P-




Question Number 144271 by 7770 last updated on 24/Jun/21
a,b,c are in G.P. If a^x =b^y =c^z   prove that (1/x),(1/z) are in A.P.
a,b,careinG.P.Ifax=by=czprovethat1x,1zareinA.P.
Commented by Rasheed.Sindhi last updated on 24/Jun/21
Correct please:  prove that (1/x),(1/y),(1/z) are in A.P.
Correctplease:provethat1x,1y,1zareinA.P.
Answered by Rasheed.Sindhi last updated on 24/Jun/21
Let a^x =b^y =c^z =k          x=((log k)/(log a))⇒(1/x)=((log a)/(log k))          y=((log k)/(log b))⇒(1/y)=((log b)/(log k))          x=((log k)/(log c))⇒(1/z)=((log c)/(log k))    (1/y)−(1/x)=^(?) (1/z)−(1/y)  ((log b)/(log k))−((log a)/(log k))=^(?) ((log c)/(log k))−((log b)/(log k))  ∵ a,b,c are in GP  ∴ Let b=ar & c=ar^2   ((log(ar))/(log k))−((log a)/(log k))=^(?) ((log(ar^2 ))/(log k))−((log(ar))/(log k))  ((log a+log r−log a)/(log k))=^(?) ((log a+2log r−log a−log r)/(log k))  ((log r)/(log k))=((log r)/(log k))   ∴ (1/x),(1/y),(1/z) are in AP
Letax=by=cz=kx=logkloga1x=logalogky=logklogb1y=logblogkx=logklogc1z=logclogk1y1x=?1z1ylogblogklogalogk=?logclogklogblogka,b,careinGPLetb=ar&c=ar2log(ar)logklogalogk=?log(ar2)logklog(ar)logkloga+logrlogalogk=?loga+2logrlogalogrlogklogrlogk=logrlogk1x,1y,1zareinAP
Answered by Rasheed.Sindhi last updated on 24/Jun/21
Let b=ar & c=ar^2   a^x =b^y =c^z ⇒a^x =(ar)^y =(ar^2 )^z   xlog a=y(log a+log r)=z(log a+2log r)=k(say)  x=(k/(log a))⇒(1/x)=((log a)/k)  y=(k/(log a+log r))⇒(1/y)=((log a+log r))/k)  z=(k/(log a+2log r))⇒(1/z)=((log a+2log r)/k)  (1/y)−(1/x)=^(?) (1/z)−(1/y)  ((log a+log r))/k)−((log a)/k)=^(?) ((log a+2log r)/k)−((log a+log r))/k)  ((log r)/k)=((log r)/k)  ∴ (1/x),(1/y),(1/z) are in AP
Letb=ar&c=ar2ax=by=czax=(ar)y=(ar2)zxloga=y(loga+logr)=z(loga+2logr)=k(say)x=kloga1x=logaky=kloga+logr1y=loga+logr)kz=kloga+2logr1z=loga+2logrk1y1x=?1z1yloga+logr)klogak=?loga+2logrkloga+logr)klogrk=logrk1x,1y,1zareinAP
Answered by Rasheed.Sindhi last updated on 24/Jun/21
a^x =b^y =c^z   a=b^(y/x) =c^(z/x)   b=ar & c=ar^2   a=a^(y/x) r^(y/x) =a^(z/x) r^(2z/x)   r^(y/x) =a^(1−(y/x)) =a^((x−y)/x)   r=a^((x−y)/y) ..............(i)  a=a^(z/x) r^(2z/x)   r^(2z/x) =a^(1−(z/x)) =a^((x−z)/x)   r=a^((x−z)/(2z)) ..................(ii)  From (i) & (ii)  r=a^((x−y)/y) =a^((x−z)/(2z)) ⇒((x−y)/y)=((x−z)/(2z))  2xz−2yz=xy−yz  2xz=xy+yz  Dividing by xyz:  (2/y)=(1/z)+(1/x)  (1/y)=(((1/x)+(1/z))/2)  ∴ (1/x),(1/y),(1/z) are inAP
ax=by=cza=by/x=cz/xb=ar&c=ar2a=ay/xry/x=az/xr2z/xry/x=a1yx=axyxr=axyy..(i)a=az/xr2z/xr2z/x=a1zx=axzxr=axz2z(ii)From(i)&(ii)r=axyy=axz2zxyy=xz2z2xz2yz=xyyz2xz=xy+yzDividingbyxyz:2y=1z+1x1y=1x+1z21x,1y,1zareinAP

Leave a Reply

Your email address will not be published. Required fields are marked *