Menu Close

a-b-c-are-nonnegative-real-numbers-and-a-b-c-1-show-that-0-ab-bc-ca-2abc-7-27-




Question Number 54603 by behi83417@gmail.com last updated on 07/Feb/19
a,b,c ,are nonnegative real numbers  and:   a+b+c=1  .  show that:        0≤  ab+bc+ca−2abc   ≤(7/(27)) .
a,b,c,arenonnegativerealnumbersand:a+b+c=1.showthat:0ab+bc+ca2abc727.
Answered by tanmay.chaudhury50@gmail.com last updated on 08/Feb/19
(a+b+c)^2 =a^2 +b^2 +c^2 +2(ab+bc+ac)  ((a+b+c)/3)≥((abc))^(1/3)   →(1/(27))≥abc  ((a^2 +b^2 +c^2 )/3)≥((a^2 b^2 c^2 ))^(1/3)   ((a^2 +b^2 +c^2 )/3)≥(abc)^(2/3) ≈((1/(27)))^(2/3)   a^2 +b^2 +c^2 ≈3×(1/9)  so  1=(1/3)+2(ab+bc+ac)  ab+bc+ac≈(1/3)  so value of ab+bc+ac−2abc  =(1/3)−(2/(27))  ((9−2)/(27))=(7/(27))  0≤ab+bc+ac−2abc≤(7/(27))
(a+b+c)2=a2+b2+c2+2(ab+bc+ac)a+b+c3abc3127abca2+b2+c23a2b2c23a2+b2+c23(abc)23(127)23a2+b2+c23×19so1=13+2(ab+bc+ac)ab+bc+ac13sovalueofab+bc+ac2abc=132279227=7270ab+bc+ac2abc727

Leave a Reply

Your email address will not be published. Required fields are marked *