Menu Close

a-b-c-d-2-a-2-b-2-c-2-d-2-6-a-3-b-3-c-3-d-3-20-a-4-b-4-c-4-d-4-66-a-b-c-d-




Question Number 82030 by naka3546 last updated on 17/Feb/20
a − b + c − d  =  2  a^2  − b^2  + c^2  − d^2   =  6  a^3  − b^3  + c^3  − d^3   =  20  a^4  − b^4  + c^4  − d^4   =  66  a + b + c + d  =  ?
$${a}\:−\:{b}\:+\:{c}\:−\:{d}\:\:=\:\:\mathrm{2} \\ $$$${a}^{\mathrm{2}} \:−\:{b}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \:−\:{d}^{\mathrm{2}} \:\:=\:\:\mathrm{6} \\ $$$${a}^{\mathrm{3}} \:−\:{b}^{\mathrm{3}} \:+\:{c}^{\mathrm{3}} \:−\:{d}^{\mathrm{3}} \:\:=\:\:\mathrm{20} \\ $$$${a}^{\mathrm{4}} \:−\:{b}^{\mathrm{4}} \:+\:{c}^{\mathrm{4}} \:−\:{d}^{\mathrm{4}} \:\:=\:\:\mathrm{66} \\ $$$${a}\:+\:{b}\:+\:{c}\:+\:{d}\:\:=\:\:? \\ $$
Answered by MJS last updated on 17/Feb/20
let  a=α−(√β)∧c=α+(√β)∧b=γ−(√δ)∧d=γ+(√δ)  ⇒ we can easily solve the equations and find  there′s only one solution  a=1∧b=0∧c=3∧d=2  ⇒ a+b+c+d=6
$$\mathrm{let} \\ $$$${a}=\alpha−\sqrt{\beta}\wedge{c}=\alpha+\sqrt{\beta}\wedge{b}=\gamma−\sqrt{\delta}\wedge{d}=\gamma+\sqrt{\delta} \\ $$$$\Rightarrow\:\mathrm{we}\:\mathrm{can}\:\mathrm{easily}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{and}\:\mathrm{find} \\ $$$$\mathrm{there}'\mathrm{s}\:\mathrm{only}\:\mathrm{one}\:\mathrm{solution} \\ $$$${a}=\mathrm{1}\wedge{b}=\mathrm{0}\wedge{c}=\mathrm{3}\wedge{d}=\mathrm{2} \\ $$$$\Rightarrow\:{a}+{b}+{c}+{d}=\mathrm{6} \\ $$
Commented by mr W last updated on 17/Feb/20
perfect solution sir!
$${perfect}\:{solution}\:{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *