Menu Close

a-b-c-d-e-kids-are-in-ascending-order-of-heights-If-they-are-to-stand-in-a-circle-in-a-way-so-that-the-sum-of-difference-in-heights-of-adjacent-pairs-is-a-minimum-find-this-minimum-




Question Number 155797 by ajfour last updated on 09/Oct/21
a,b,c,d,e  (kids) are in ascending  order of heights. If they are  to stand in a circle in a way so  that the sum of ∣difference in  heights of adjacent pairs∣   is a minimum, find this   minimum.
$${a},{b},{c},{d},{e}\:\:\left({kids}\right)\:{are}\:{in}\:{ascending} \\ $$$${order}\:{of}\:{heights}.\:{If}\:{they}\:{are} \\ $$$${to}\:{stand}\:{in}\:{a}\:{circle}\:{in}\:{a}\:{way}\:{so} \\ $$$${that}\:{the}\:{sum}\:{of}\:\mid{difference}\:{in} \\ $$$${heights}\:{of}\:{adjacent}\:{pairs}\mid \\ $$$$\:{is}\:{a}\:{minimum},\:{find}\:{this} \\ $$$$\:{minimum}. \\ $$
Commented by ajfour last updated on 09/Oct/21
(Σ∣a−b∣)_(min) =?  sir?
$$\left(\Sigma\mid\mathrm{a}−\mathrm{b}\mid\right)_{\mathrm{min}} =? \\ $$$$\mathrm{sir}? \\ $$
Commented by mr W last updated on 05/Oct/21
a,b,c,d,e are given, so the  sum is always   (e−d)+(d−c)+(c−b)+(b−a)=e−a
$${a},{b},{c},{d},{e}\:{are}\:{given},\:{so}\:{the} \\ $$$${sum}\:{is}\:{always}\: \\ $$$$\left({e}−{d}\right)+\left({d}−{c}\right)+\left({c}−{b}\right)+\left({b}−{a}\right)={e}−{a} \\ $$
Commented by mr W last updated on 05/Oct/21
any circle with diameter ≥e is ok.
$${any}\:{circle}\:{with}\:{diameter}\:\geqslant{e}\:{is}\:{ok}. \\ $$
Commented by mr W last updated on 09/Oct/21
what is meant?  Σ∣a−b∣=(b−a)+(c−b)+(d−c)+(e−d) ?  or  Σ∣a−b∣=(b−a)+(c−a)+(d−a)+(e−a)                     +(c−b)+(d−b)+(e−b)                    +(d−c)+(e−c)                    +(e−d) ?
$${what}\:{is}\:{meant}? \\ $$$$\Sigma\mid{a}−{b}\mid=\left({b}−{a}\right)+\left({c}−{b}\right)+\left({d}−{c}\right)+\left({e}−{d}\right)\:? \\ $$$${or} \\ $$$$\Sigma\mid{a}−{b}\mid=\left({b}−{a}\right)+\left({c}−{a}\right)+\left({d}−{a}\right)+\left({e}−{a}\right)\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\left({c}−{b}\right)+\left({d}−{b}\right)+\left({e}−{b}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\left({d}−{c}\right)+\left({e}−{c}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\left({e}−{d}\right)\:? \\ $$
Commented by ajfour last updated on 09/Oct/21
∣−3∣=3    ∣3∣=3  ∣  ∣   is the modulus function, sir.  say   a=2, b=4, c=5, d=7, e=9  Find  how will we arrange  a, b, c, d, e in a circle so that  y=Σ∣x_1 −x_2 ∣   & y is minimum.  say if we arrange circularly   like  eg.   acbeda   then  y_(eg.) =∣a−c∣+∣c−b∣+∣b−e∣     +∣e−d∣+∣d−a∣     y_(eg.) =∣2−5∣+∣5−4∣+∣4−9∣            +∣9−7∣+∣7−2∣    y_(eg.) =3+1+5+2+5 = 16  but we need  y_(min) .  what if we arrange in  ascending order itself i.e.  abcdea  then    y_(ascend) =2+1+2+2+7                            =14  is this y_(min) ?
$$\mid−\mathrm{3}\mid=\mathrm{3}\:\: \\ $$$$\mid\mathrm{3}\mid=\mathrm{3} \\ $$$$\mid\:\:\mid\:\:\:\mathrm{is}\:\mathrm{the}\:\mathrm{modulus}\:\mathrm{function},\:\mathrm{sir}. \\ $$$$\mathrm{say}\:\:\:\mathrm{a}=\mathrm{2},\:\mathrm{b}=\mathrm{4},\:\mathrm{c}=\mathrm{5},\:\mathrm{d}=\mathrm{7},\:\mathrm{e}=\mathrm{9} \\ $$$$\mathrm{Find}\:\:\mathrm{how}\:\mathrm{will}\:\mathrm{we}\:\mathrm{arrange} \\ $$$$\mathrm{a},\:\mathrm{b},\:\mathrm{c},\:\mathrm{d},\:\mathrm{e}\:\mathrm{in}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{so}\:\mathrm{that} \\ $$$$\mathrm{y}=\Sigma\mid\mathrm{x}_{\mathrm{1}} −\mathrm{x}_{\mathrm{2}} \mid\:\:\:\&\:\mathrm{y}\:\mathrm{is}\:\mathrm{minimum}. \\ $$$$\mathrm{say}\:\mathrm{if}\:\mathrm{we}\:\mathrm{arrange}\:\mathrm{circularly} \\ $$$$\:\mathrm{like}\:\:\mathrm{eg}.\:\:\:\mathrm{acbeda}\:\:\:\mathrm{then} \\ $$$$\mathrm{y}_{\mathrm{eg}.} =\mid\mathrm{a}−\mathrm{c}\mid+\mid\mathrm{c}−\mathrm{b}\mid+\mid\mathrm{b}−\mathrm{e}\mid \\ $$$$\:\:\:+\mid\mathrm{e}−\mathrm{d}\mid+\mid\mathrm{d}−\mathrm{a}\mid \\ $$$$\:\:\:\mathrm{y}_{\mathrm{eg}.} =\mid\mathrm{2}−\mathrm{5}\mid+\mid\mathrm{5}−\mathrm{4}\mid+\mid\mathrm{4}−\mathrm{9}\mid \\ $$$$\:\:\:\:\:\:\:\:\:\:+\mid\mathrm{9}−\mathrm{7}\mid+\mid\mathrm{7}−\mathrm{2}\mid \\ $$$$\:\:\mathrm{y}_{\mathrm{eg}.} =\mathrm{3}+\mathrm{1}+\mathrm{5}+\mathrm{2}+\mathrm{5}\:=\:\mathrm{16} \\ $$$$\mathrm{but}\:\mathrm{we}\:\mathrm{need}\:\:\mathrm{y}_{\mathrm{min}} . \\ $$$$\mathrm{what}\:\mathrm{if}\:\mathrm{we}\:\mathrm{arrange}\:\mathrm{in} \\ $$$$\mathrm{ascending}\:\mathrm{order}\:\mathrm{itself}\:\mathrm{i}.\mathrm{e}. \\ $$$$\mathrm{abcdea} \\ $$$$\mathrm{then}\:\:\:\:\mathrm{y}_{\mathrm{ascend}} =\mathrm{2}+\mathrm{1}+\mathrm{2}+\mathrm{2}+\mathrm{7} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{14} \\ $$$$\mathrm{is}\:\mathrm{this}\:\mathrm{y}_{\mathrm{min}} ? \\ $$$$ \\ $$
Commented by mr W last updated on 09/Oct/21
now i understand the question. i′ll  think about it again.
$${now}\:{i}\:{understand}\:{the}\:{question}.\:{i}'{ll} \\ $$$${think}\:{about}\:{it}\:{again}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *