Menu Close

a-b-c-d-R-a-b-c-d-1-Prove-that-abc-bcd-cda-dab-1-27-176-27-abcd-




Question Number 58462 by naka3546 last updated on 23/Apr/19
a, b, c, d  ∈  R^+   a + b + c + d  =  1  Prove  that  :  abc + bcd + cda + dab  ≤  (1/(27))  +  ((176)/(27)) abcd
a,b,c,dR+a+b+c+d=1Provethat:abc+bcd+cda+dab127+17627abcd
Answered by tanmay last updated on 24/Apr/19
((a+b+c+d)/4)≥(abcd)^(1/4)   abcd≤((1/4))^4 →abcd≤(1/(256))  considering  abcd=(1/(256))  (abc+bcd+cda+dab)×(1/4)≥(a^3 b^3 c^3 d^3 )^(1/4)   (abc+bcd+cda+dab)≥4(abcd)^(3/4)   (abc+bcd+cda+dab)≥4((1/(256)))^(3/4)     (abc+bcd+cda+dab)≥(1/(16))  abc+bcd+cda+dab=(1/(16))  RHS  (1/(27))+((176)/(27))abcd  (1/(27))+((176×1)/(27×256))  (1/(27))(1+((11)/(16)))  =(1/(16))  LHS=RHS  i have solved considering  =sign in≥ sign
a+b+c+d4(abcd)14abcd(14)4abcd1256consideringabcd=1256(abc+bcd+cda+dab)×14(a3b3c3d3)14(abc+bcd+cda+dab)4(abcd)34(abc+bcd+cda+dab)4(1256)34(abc+bcd+cda+dab)116abc+bcd+cda+dab=116RHS127+17627abcd127+176×127×256127(1+1116)=116LHS=RHSihavesolvedconsidering=signinsign

Leave a Reply

Your email address will not be published. Required fields are marked *