Menu Close

a-b-c-gt-0-prove-a-a-2-8bc-b-b-2-8ac-c-c-2-8ab-1-help-please-




Question Number 98570 by HamraboyevFarruxjon last updated on 14/Jun/20
a,b,c>0       prove:  (a/( (√(a^2 +8bc))))+(b/( (√(b^2 +8ac))))+(c/( (√(c^2 +8ab))))≥1  help please...
a,b,c>0prove:aa2+8bc+bb2+8ac+cc2+8ab1helpplease
Commented by MJS last updated on 14/Jun/20
extremes where a=b=c  here this leads to  3(a/( (√(a^2 +8a^2 ))))=1 for a>0  ⇒ min (lhs) =1 ⇒ proven
extremeswherea=b=cherethisleadsto3aa2+8a2=1fora>0min(lhs)=1proven
Answered by 1549442205 last updated on 15/Jun/20
    Applying the Cauchi−Schwartz we have  we have  P=(a/( (√(a^2 +8bc))))+(b/( (√(b^2 +8ca))))+(c/( (√(c^2 +8ab))))=(a^2 /(a(√(a^2 +8bc))))+(b^2 /(b(√(b^2 +8ca))))+(c^2 /(c(√(c^2 +8ab))))≥(((a+b+c)^2 )/(a(√(a^2 +8bc))+b(√(b^2 +8ca))+c(√(c^2 +8ab))))   On the other hands,also by C−S we have  a(√(a^2 +8bc))+b(√(b^2 +8ca))+c(√(c^2 +8ab))=(√a).(√(a^3 +8abc))+(√b).(√(b^3 +8abc))+(√c).(√(c^3 +8abc))  ≤(√((a+b+c)(a^3 +b^3 +c^3 +24abc))).Hence,  P≥(((a+b+c)^2 )/( (√((a+b+c)(a^3 +b^3 +c^3 +24abc)))))=(√(((a+b+c)^3 )/(a^3 +b^3 +c^3 +24abc))).Therefore,it is enough  to prove that (((a+b+c)^3 )/(a^3 +b^3 +c^3 +24abc))≥1⇔  (a+b+c)^3 ≥a^3 +b^3 +c^3 +24abc⇔(a+b)(b+c)(c+a)≥8abc  This final inequality is always true because  it is followed from the inequlities:  a+b≥2(√(ab)) ,b+c≥2(√(bc)) ,c+a≥2(√(ca))  Thus,P≥1.The equality occurs if an only if  a=b=c(q.e.d)
ApplyingtheCauchiSchwartzwehavewehaveP=aa2+8bc+bb2+8ca+cc2+8ab=a2aa2+8bc+b2bb2+8ca+c2cc2+8ab(a+b+c)2aa2+8bc+bb2+8ca+cc2+8abOntheotherhands,alsobyCSwehaveaa2+8bc+bb2+8ca+cc2+8ab=a.a3+8abc+b.b3+8abc+c.c3+8abc(a+b+c)(a3+b3+c3+24abc).Hence,P(a+b+c)2(a+b+c)(a3+b3+c3+24abc)=(a+b+c)3a3+b3+c3+24abc.Therefore,itisenoughtoprovethat(a+b+c)3a3+b3+c3+24abc1(a+b+c)3a3+b3+c3+24abc(a+b)(b+c)(c+a)8abcThisfinalinequalityisalwaystruebecauseitisfollowedfromtheinequlities:a+b2ab,b+c2bc,c+a2caThus,P1.Theequalityoccursifanonlyifa=b=c(q.e.d)
Commented by Farruxjano last updated on 15/Jun/20
Sir thanks a lot
Sirthanksalot
Commented by 1549442205 last updated on 25/Jun/20
Thank you!you are wellcome ,sir.
Thankyou!youarewellcome,sir.

Leave a Reply

Your email address will not be published. Required fields are marked *