Question Number 64519 by necx1 last updated on 18/Jul/19
$${a},{b},{c}\:{is}\:{a}\:{geometric}\:{progression}\:{such} \\ $$$${that} \\ $$$${a}+{b}+{c}=\mathrm{26} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{364} \\ $$$$ \\ $$$${find}\:{a},{b},{c} \\ $$
Answered by MJS last updated on 19/Jul/19
$${a}+{ar}+{ar}^{\mathrm{2}} =\mathrm{26}\:\Rightarrow\:{a}=\frac{\mathrm{26}}{\mathrm{1}+{r}+{r}^{\mathrm{2}} } \\ $$$${a}^{\mathrm{2}} +{a}^{\mathrm{2}} {r}^{\mathrm{2}} +{a}^{\mathrm{2}} {r}^{\mathrm{4}} =\mathrm{364}\:\Rightarrow\:{a}^{\mathrm{2}} =\frac{\mathrm{364}}{\mathrm{1}+{r}^{\mathrm{2}} +{r}^{\mathrm{4}} } \\ $$$$\frac{\mathrm{26}^{\mathrm{2}} }{\left(\mathrm{1}+{r}+{r}^{\mathrm{2}} \right)^{\mathrm{2}} }=\frac{\mathrm{364}}{\mathrm{1}+{r}^{\mathrm{2}} +{r}^{\mathrm{4}} } \\ $$$$\mathrm{13}\left(\mathrm{1}+{r}^{\mathrm{2}} +{r}^{\mathrm{4}} \right)=\mathrm{7}\left(\mathrm{1}+{r}+{r}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$\mathrm{6}{r}^{\mathrm{4}} −\mathrm{14}{r}^{\mathrm{3}} −\mathrm{8}{r}^{\mathrm{2}} −\mathrm{14}{r}+\mathrm{6}=\mathrm{0} \\ $$$$\mathrm{6}\left({r}−\mathrm{3}\right)\left({r}−\frac{\mathrm{1}}{\mathrm{3}}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\:{r}=\mathrm{3}\vee{r}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${r}=\mathrm{3}\:\Rightarrow\:{a}=\mathrm{2}\:\:{b}=\mathrm{6}\:\:{c}=\mathrm{18} \\ $$$${r}=\frac{\mathrm{1}}{\mathrm{3}}\:\Rightarrow\:{a}=\mathrm{18}\:\:{b}=\mathrm{6}\:\:{c}=\mathrm{2} \\ $$