Menu Close

a-b-c-is-a-geometric-progression-such-that-a-b-c-26-a-2-b-2-c-2-364-find-a-b-c-




Question Number 64519 by necx1 last updated on 18/Jul/19
a,b,c is a geometric progression such  that  a+b+c=26  a^2 +b^2 +c^2 =364    find a,b,c
a,b,cisageometricprogressionsuchthata+b+c=26a2+b2+c2=364finda,b,c
Answered by MJS last updated on 19/Jul/19
a+ar+ar^2 =26 ⇒ a=((26)/(1+r+r^2 ))  a^2 +a^2 r^2 +a^2 r^4 =364 ⇒ a^2 =((364)/(1+r^2 +r^4 ))  ((26^2 )/((1+r+r^2 )^2 ))=((364)/(1+r^2 +r^4 ))  13(1+r^2 +r^4 )=7(1+r+r^2 )^2   6r^4 −14r^3 −8r^2 −14r+6=0  6(r−3)(r−(1/3))(x^2 +x+1)=0  ⇒ r=3∨r=(1/3)  r=3 ⇒ a=2  b=6  c=18  r=(1/3) ⇒ a=18  b=6  c=2
a+ar+ar2=26a=261+r+r2a2+a2r2+a2r4=364a2=3641+r2+r4262(1+r+r2)2=3641+r2+r413(1+r2+r4)=7(1+r+r2)26r414r38r214r+6=06(r3)(r13)(x2+x+1)=0r=3r=13r=3a=2b=6c=18r=13a=18b=6c=2

Leave a Reply

Your email address will not be published. Required fields are marked *