Menu Close

a-b-c-R-a-b-c-5-Prove-that-a-2-b-2-2b-1-b-2-c-2-2c-1-c-2-a-2-2a-1-29-




Question Number 59131 by naka3546 last updated on 05/May/19
a, b, c  ∈  R  a + b + c  =  5  Prove  that  (√(a^2  + b^2  − 2b + 1))  +  (√(b^2  + c^2  − 2c + 1))  +  (√(c^2  + a^2  − 2a + 1))   ≥  (√(29))
a,b,cRa+b+c=5Provethata2+b22b+1+b2+c22c+1+c2+a22a+129
Answered by Senior Sun last updated on 06/May/19
By Minkoski  Σ_(cyc) (√(a^2 +(b−1)^2 ))≥(√((Σ_(cyc) a)^2 +(Σ_(cyc) b−3)^2 ))                                 ≥(√(5^2 +(5−3)^2 ))                                 ≥(√(29))  there is no equality, so the givten inequality  is >(√(29))
ByMinkoskicyca2+(b1)2(cyca)2+(cycb3)252+(53)229thereisnoequality,sothegivteninequalityis>29
Answered by tanmay last updated on 05/May/19
(√(a^2 +(b−1)^2 )) +(√(b^2 +(c−1)^2  )) +(√(c^2 +(a−1)^2 ))   ((a^2 +(b−1)^2 )/2)≥[a^2 ×(b−1)^2 ]^(1/2)   (√(a^2 +(b−1)^2 )) ≥(√(2(a)(b−1)))   given exptession≥(√2) [(√(a(b−1))) +(√(b(c−1))) +(√(c(a−1))) ]  (√2)×((a+b−1)/2)≥[a(b−1)]^(1/2) ×(√2)  (√2)×((b+c−1)/2)≥[b(c−1)]^(1/2) ×(√2)  (√2)×((c+a−1)/2)≥[c(a−1)]^(1/2) ×(√2)  (√2)×[((2(a+b+c)−3)/2)]≥(√2) [(√(a(b−1)+b(c−1)+c(a−1)))   (√2) ×(7/2)≥D.E  [D.E=derived expression]
a2+(b1)2+b2+(c1)2+c2+(a1)2a2+(b1)22[a2×(b1)2]12a2+(b1)22(a)(b1)givenexptession2[a(b1)+b(c1)+c(a1)]2×a+b12[a(b1)]12×22×b+c12[b(c1)]12×22×c+a12[c(a1)]12×22×[2(a+b+c)32]2[a(b1)+b(c1)+c(a1)2×72D.E[D.E=derivedexpression]
Commented by tanmay last updated on 05/May/19
to be continued...
tobecontinued

Leave a Reply

Your email address will not be published. Required fields are marked *