Menu Close

a-b-c-R-and-a-b-c-and-a-b-c-b-a-c-c-a-b-are-three-consecutive-terms-of-AP-Arithmetic-progression-find-b-2-a-2-c-2-b-2-




Question Number 171403 by mnjuly1970 last updated on 14/Jun/22
  a , b , c ∈R  and  a≠b≠c    and   (a/(b+c)) , (b/(a+c)) , (c/(a+b))   are three consecutive terms of AP    (Arithmetic progression )    find −:   ((b^( 2) −a^( 2) )/(c^( 2) −b^( 2) ))
a,b,cRandabcandab+c,ba+c,ca+barethreeconsecutivetermsofAP(Arithmeticprogression)find:b2a2c2b2
Answered by Rasheed.Sindhi last updated on 15/Jun/22
(b/(a+c))− (a/(b+c))=(c/(a+b))−(b/(a+c))  ((b(b+c)−a(a+c))/((a+c)(b+c)))=((c(a+c)−b(a+b))/((a+b)(a+c)))  ((b^2 +bc−a^2 −ac))/((a+c)(b+c)))=((ac+c^2 −ab−b^2 )/((a+b)(a+c)))  (((b−a)(b+a)+c(b−a))/((a+c)(b+c)))=(((c−b)(c+b)+a(c−b))/((a+b)(a+c)))  (((a−b)(a+b+c))/((a+c)(b+c)))−(((b−c)(a+b+c))/((a+b)(a+c)))=0  (a+b+c)∙(((a−b)/((a+c)(b+c)))−((b−c)/((a+b)(a+c))))=0   { ((a+b+c=0)),((      OR)),((((a−b)/(b+c))=((b−c)/(a+b))⇒a^2 −b^2 =b^2 −c^2 )) :}  ((a^2 −b^2 )/(b^2 −c^2 ))=1⇒((b^( 2) −a^( 2) )/(c^( 2) −b^( 2) ))=1
ba+cab+c=ca+bba+cb(b+c)a(a+c)(a+c)(b+c)=c(a+c)b(a+b)(a+b)(a+c)b2+bca2ac)(a+c)(b+c)=ac+c2abb2(a+b)(a+c)(ba)(b+a)+c(ba)(a+c)(b+c)=(cb)(c+b)+a(cb)(a+b)(a+c)(ab)(a+b+c)(a+c)(b+c)(bc)(a+b+c)(a+b)(a+c)=0(a+b+c)(ab(a+c)(b+c)bc(a+b)(a+c))=0{a+b+c=0ORabb+c=bca+ba2b2=b2c2a2b2b2c2=1b2a2c2b2=1
Commented by Rasheed.Sindhi last updated on 15/Jun/22
The condition should  be a+b+c≠0  instead of a≠b≠c
Theconditionshouldbea+b+c0insteadofabc
Commented by Rasheed.Sindhi last updated on 15/Jun/22
Thanks sir, you′re right.
Thankssir,youreright.

Leave a Reply

Your email address will not be published. Required fields are marked *