Menu Close

a-b-c-R-andIf-a-b-c-18-then-maximum-value-of-a-2-b-3-c-4-is-




Question Number 15865 by prakash jain last updated on 14/Jun/17
a,b,c∈R^(+ ) andIf a+b+c=18 then maximum value  of a^2 b^3 c^4  is
a,b,cR+andIfa+b+c=18thenmaximumvalueofa2b3c4is
Answered by Tinkutara last updated on 14/Jun/17
We know that A.M. ≥ G.M.  ∴ (((a/2) + (a/2) + (b/3) + (b/3) + (b/3) + (c/4) + (c/4) + (c/4) + (c/4))/9) ≥ (((a^2 b^3 c^4 )/(2^2 .3^3 .4^4 )))^(1/9)   ⇒ 2 ≥ (((a^2 b^3 c^4 )/(2^2 .3^3 .4^4 )))^(1/9)  [∵ a + b + c = 18]  ((a^2 b^3 c^4 )/(2^(10) .3^3 )) ≤ 2^9   ∴ a^2 b^3 c^4  ≤ 2^(19) .3^3
WeknowthatA.M.G.M.a2+a2+b3+b3+b3+c4+c4+c4+c49a2b3c422.33.4492a2b3c422.33.449[a+b+c=18]a2b3c4210.3329a2b3c4219.33
Answered by mrW1 last updated on 14/Jun/17
c=18−(a+b)  P=a^2 b^3 c^4 =a^2 b^3 (18−a−b)^4     (∂P/∂a)=2ab^3 (18−a−b)^4 −4a^2 b^3 (18−a−b)^3 =0  ⇒2ab^3 (18−a−b)^3 [(18−a−b)−2a]=0  ⇒(18−a−b)−2a=0   ...(i)    (∂P/∂b)=3a^2 b^2 (18−a−b)^4 −4a^2 b^3 (18−a−b)^3 =0  (∂P/∂b)=3a^2 b^2 (18−a−b)^3 [(18−a−b)−(4/3)b]=0  ⇒(18−a−b)−(4/3)b=0    ...(ii)    from (i) and (ii):  2a=(4/3)b  a=(2/3)b  18−(2/3)b−b−(4/3)b=0  ⇒b=6  ⇒a=4  ⇒c=18−4−6=8    ⇒P_(max) =4^2 ×6^3 ×8^4 =2^(19) ×3^3 =14155776
c=18(a+b)P=a2b3c4=a2b3(18ab)4Pa=2ab3(18ab)44a2b3(18ab)3=02ab3(18ab)3[(18ab)2a]=0(18ab)2a=0(i)Pb=3a2b2(18ab)44a2b3(18ab)3=0Pb=3a2b2(18ab)3[(18ab)43b]=0(18ab)43b=0(ii)from(i)and(ii):2a=43ba=23b1823bb43b=0b=6a=4c=1846=8Pmax=42×63×84=219×33=14155776

Leave a Reply

Your email address will not be published. Required fields are marked *