Question Number 176399 by Matica last updated on 18/Sep/22
$$\:{a},{b},{c}\:\in\mathbb{R}_{+} ^{\ast} \:\:{prove}\:{that}\:{a}+{b}+{c}\geqslant\mathrm{3}\:^{\mathrm{3}} \sqrt{{abc}} \\ $$$$ \\ $$
Commented by Matica last updated on 18/Sep/22
$${Please}\:{prove}\:{that}\:{AM}\geqslant{GM} \\ $$
Answered by Frix last updated on 18/Sep/22
$$\mathrm{for}\:\mathrm{2}\:\mathrm{numbers}\:\geqslant\mathrm{0} \\ $$$$\frac{{a}+{b}}{\mathrm{2}}\geqslant\sqrt{{ab}}\:\:\:\:\:\mathrm{both}\:\mathrm{sides}\:\geqslant\mathrm{0}\:\Rightarrow\:\mathrm{we}\:\mathrm{are}\:\mathrm{allowed}\:\mathrm{to}\:\mathrm{square} \\ $$$$\frac{\left({a}+{b}\right)^{\mathrm{2}} }{\mathrm{4}}\geqslant{ab} \\ $$$$\left({a}+{b}\right)^{\mathrm{2}} \geqslant\mathrm{4}{ab} \\ $$$${a}^{\mathrm{2}} +\mathrm{2}{ab}+{b}^{\mathrm{2}} \geqslant\mathrm{4}{ab} \\ $$$${a}^{\mathrm{2}} −\mathrm{2}{ab}+{b}^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\left({a}−{b}\right)^{\mathrm{2}} \geqslant\mathrm{0}\:\mathrm{true} \\ $$
Answered by Frix last updated on 18/Sep/22
$$\mathrm{for}\:\mathrm{3}\:\mathrm{numbers}\:\geqslant\mathrm{0} \\ $$$$\frac{{a}+{b}+{c}}{\mathrm{3}}\geqslant\sqrt[{\mathrm{3}}]{{abc}} \\ $$$$\frac{\left({a}+{b}+{c}\right)^{\mathrm{3}} }{\mathrm{27}}\geqslant{abc} \\ $$$$\left({a}+{b}+{c}\right)^{\mathrm{3}} \geqslant\mathrm{27}{abc} \\ $$$$\mathrm{let}\:{a}\leqslant{b}\wedge{a}\leqslant{c}\wedge{p},\:{q}\geqslant\mathrm{0} \\ $$$${b}={a}+{p}\wedge{c}={a}+{q} \\ $$$$\left(\mathrm{3}{a}+{p}+{q}\right)^{\mathrm{3}} \geqslant\mathrm{27}{a}\left({a}+{p}\right)\left({a}+{q}\right) \\ $$$$\left(\mathrm{3}{a}+{p}+{q}\right)^{\mathrm{3}} −\mathrm{27}{a}\left({a}+{p}\right)\left({a}+{q}\right)\geqslant\mathrm{0} \\ $$$$\mathrm{9}{ap}^{\mathrm{2}} −\mathrm{9}{apq}+\mathrm{9}{aq}^{\mathrm{2}} +{p}^{\mathrm{3}} +\mathrm{3}{p}^{\mathrm{2}} {q}+\mathrm{3}{pq}^{\mathrm{2}} +{q}^{\mathrm{3}} \geqslant\mathrm{0} \\ $$$$\mathrm{9}{a}\left({p}^{\mathrm{2}} −{pq}+{q}^{\mathrm{2}} \right)+\left({p}+{q}\right)^{\mathrm{3}} \geqslant\mathrm{0}\:\mathrm{true} \\ $$$${a}\geqslant\mathrm{0}\wedge\left({p}+{q}\right)^{\mathrm{3}} \geqslant\mathrm{0} \\ $$$${p}^{\mathrm{2}} −{pq}+{q}^{\mathrm{2}} =\left({p}−{q}\right)^{\mathrm{2}} +{pq}\geqslant\mathrm{0} \\ $$