Menu Close

a-b-d-are-gp-such-that-a-b-c-are-real-if-a-b-c-26-and-a-2-b-2-c-2-364-find-b-




Question Number 55415 by Tawa1 last updated on 23/Feb/19
a, b, d  are gp. such that  a, b, c are real.  if    a + b + c  =  26   and  a^2  + b^2  + c^2   =  364,     find  b  ?
a,b,daregp.suchthata,b,carereal.ifa+b+c=26anda2+b2+c2=364,findb?
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Feb/19
a=a  b=ar  c=ar^2   a+ar+ar^2 =26→a(1+r+r^2 )=26  a^2 +a^2 r^2 +a^2 r^4 =364→a^2 (1+r^2 +r^4 )=364  r^4 +r^2 +1  r^4 +2r^2 +1−r^2   (r^2 +1)^2 −(r)^2   (r^2 +r+1)(r^2 −r+1)  a^2 (r^2 +r+1)(r^2 −r+1)=364  now  a(r^2 −r+1)=((364)/(26))=14  ((a(r^2 +r+1))/(a(r^2 −r+1)))=((26)/(14))  13r^2 −13r+13=7r^2 +7r+7  6r^2 −20r+6=0  3r^2 −10r+3=0  3r^2 −9r−r+3=0  3r(r−3)−1(r−3)=0  (r−3)(3r−1)=0  so r=3 or (1/3)  a(r^2 +r+1)=26  a(9+3+1)=26  a=2  so  b=2×3=6  a((1/9)+(1/3)+1)=26  a(((1+3+9)/9))=26  a=((26×9)/(13))=18  so b=ar=18×(1/3)=6
a=ab=arc=ar2a+ar+ar2=26a(1+r+r2)=26a2+a2r2+a2r4=364a2(1+r2+r4)=364r4+r2+1r4+2r2+1r2(r2+1)2(r)2(r2+r+1)(r2r+1)a2(r2+r+1)(r2r+1)=364nowa(r2r+1)=36426=14a(r2+r+1)a(r2r+1)=261413r213r+13=7r2+7r+76r220r+6=03r210r+3=03r29rr+3=03r(r3)1(r3)=0(r3)(3r1)=0sor=3or13a(r2+r+1)=26a(9+3+1)=26a=2sob=2×3=6a(19+13+1)=26a(1+3+99)=26a=26×913=18sob=ar=18×13=6
Commented by Tawa1 last updated on 23/Feb/19
God bless you sir. I appreciate your effort
Godblessyousir.Iappreciateyoureffort
Answered by peter frank last updated on 24/Feb/19
(b/a)=(c/b)  b^2 =ac  a^2 +b^2 +c^2 =364  a+b+c=26  a+c=26−b  (a+c)^2 −2ac+b^2 =364  b^2 =ac  (a+c)^2 −2(b)^2 +b^2 =364  (a+c)^2 −b^2 =364  (a+c+b)(a+c−b)=364  (26−b+b)(26−b−b)=364  26(26−2b)=364  b=6
ba=cbb2=aca2+b2+c2=364a+b+c=26a+c=26b(a+c)22ac+b2=364b2=ac(a+c)22(b)2+b2=364(a+c)2b2=364(a+c+b)(a+cb)=364(26b+b)(26bb)=36426(262b)=364b=6
Commented by Tawa1 last updated on 24/Feb/19
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *