Menu Close

a-b-log-c-b-c-log-a-c-a-log-b-1-make-logc-c-the-subject-of-formula-




Question Number 23566 by NECx last updated on 01/Nov/17
((a/b))^(log c) .((b/c))^(log a) .((c/a))^(log b) =1.    make ((logc)/c) the subject of formula
(ab)logc.(bc)loga.(ca)logb=1.makelogccthesubjectofformula
Commented by NECx last updated on 01/Nov/17
please help with workings.
pleasehelpwithworkings.
Commented by mrW1 last updated on 02/Nov/17
for any a, b, c > 0 we have  log a × log b − log a × log c + log b × log c − log b × log a + log c × log a − log c × log b = 0  log a × (log b − log c)  + log b × (log c − log a) + log c × (log a − log b) = 0  log ((b/c))^(log a) +log ((c/a))^(log b) +log ((a/b))^(log c) =0  log[ ((b/c))^(log a) ×((c/a))^(log b) × ((a/b))^(log c) ]=0  ((b/c))^(log a) ×((c/a))^(log b) × ((a/b))^(log c) =1
foranya,b,c>0wehaveloga×logbloga×logc+logb×logclogb×loga+logc×logalogc×logb=0loga×(logblogc)+logb×(logcloga)+logc×(logalogb)=0log(bc)loga+log(ca)logb+log(ab)logc=0log[(bc)loga×(ca)logb×(ab)logc]=0(bc)loga×(ca)logb×(ab)logc=1
Answered by abwayh last updated on 02/Nov/17
log [((a/b))^(log c) .((b/c))^(log a) . ((c/a))^(log b)  ]=log 1  log ((a/b))^(log c) +log ((b/c))^(log a) +log ((c/a))^(log b) =0  log c log ((a/b))+log a log ((b/c))+log b log ((c/a))=0  log c [log ((a/b))+((log a)/(log c))  log ((b/c))+ ((log b)/(log c)) log ((c/a))=0  log c [log ((a/b))+log _c a log ((b/c))+log _c b log ((c/a))=0  ((log c)/c)[log ((a/b))+log _c a log ((b/c))+log _c b log ((c/a))=(0/c)    ∴ ((log c)/c)=0
log[(ab)logc.(bc)loga.(ca)logb]=log1log(ab)logc+log(bc)loga+log(ca)logb=0logclog(ab)+logalog(bc)+logblog(ca)=0logc[log(ab)+logalogclog(bc)+logblogclog(ca)=0logc[log(ab)+logcalog(bc)+logcblog(ca)=0logcc[log(ab)+logcalog(bc)+logcblog(ca)=0clogcc=0
Commented by mrW1 last updated on 02/Nov/17
((log c)/c)=0 means log c=0 or c=1, but  ((a/b))^(log c) .((b/c))^(log a) . ((c/a))^(log b)  =1 is valid  for any values of a, b, c > 0.
logcc=0meanslogc=0orc=1,but(ab)logc.(bc)loga.(ca)logb=1isvalidforanyvaluesofa,b,c>0.
Commented by NECx last updated on 04/Nov/17
thanks boss for the aproach. It  really help
thanksbossfortheaproach.Itreallyhelp
Commented by NECx last updated on 04/Nov/17
i think the values for a b c are   1000  100  and  10
ithinkthevaluesforabcare1000100and10
Commented by mrW1 last updated on 04/Nov/17
no, a b c can be any positive values.  this is proved.  if you want an expression for ((log c)/c),  then it is  ((log c)/c)=r, 0<r≤(1/(e×ln 10))
no,abccanbeanypositivevalues.thisisproved.ifyouwantanexpressionforlogcc,thenitislogcc=r,0<r1e×ln10
Commented by NECx last updated on 04/Nov/17
then how possible is it to get r ?
thenhowpossibleisittogetr?
Commented by mrW1 last updated on 04/Nov/17
c is any value, that means r is any value  in the range (0, (1/(e×ln 10))]
cisanyvalue,thatmeansrisanyvalueintherange(0,1e×ln10]
Commented by NECx last updated on 05/Nov/17
ok ... thanks
okthanks

Leave a Reply

Your email address will not be published. Required fields are marked *