a-b-N-gcd-a-b-1-prove-that-a-b-b-a-ab-1-Euler-phi-function- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 163845 by mnjuly1970 last updated on 12/Jan/22 a,b∈N,gcd(a,b)=1provethataφ(b)+bφ(a)≡ab1φ:Eulerphifunction… Answered by mindispower last updated on 14/Jan/22 aφ(b)≡1[b]⇔aφ(b)−1≡0[b]bφ(a)≡1[a]⇔bφ(a)−1≡0[a]..fermatTheorem⇒(aφ(b)−1)(bφ(a)−1)≡0[ab]⇔aφ(b)bφ(a)−(aφ(b)+bφ(a)−1)≡0[ab]…..Eφ:N∗→N∗⇒φ(a),φ(b)⩾1⇒ab∣aφ(b)bφ(a)aφ(b)bφ(a)≡0[ab]E⇔bφ(a)+aφ(b)−1≡[ab]⇔bφ(a)+aφ(b)≡1[b] Commented by mnjuly1970 last updated on 14/Jan/22 thanksalotsirpower.. Commented by mindispower last updated on 18/Jan/22 withePleasursir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: prove-by-using-serie-that-0-cos-x-2-dx-0-sin-x-2-dx-Next Next post: 1-1-2-1-2-3-1-19-20-1-20-21- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.