Menu Close

a-b-N-gcd-a-b-1-prove-that-a-b-b-a-ab-1-Euler-phi-function-




Question Number 163845 by mnjuly1970 last updated on 12/Jan/22
         a, b ∈ N  ,  gcd( a ,  b )=1       prove  that                   a^(  ϕ (b )) + b^( ϕ (a ))  ≡^( ab)  1       ϕ :   Euler phi  function ...
a,bN,gcd(a,b)=1provethataφ(b)+bφ(a)ab1φ:Eulerphifunction
Answered by mindispower last updated on 14/Jan/22
a^(ϕ(b)) ≡1[b]⇔a^(ϕ(b)) −1≡0[b]  b^(ϕ(a)) ≡1[a]⇔b^(ϕ(a)) −1≡0[a]..   fermat Theorem  ⇒(a^(ϕ(b)) −1)(b^(ϕ(a)) −1)≡0[ab]  ⇔a^(ϕ(b)) b^(ϕ(a)) −(a^(ϕ(b)) +b^(ϕ(a)) −1)≡0[ab].....E  ϕ:N^∗ →N^∗ ⇒ϕ(a),ϕ(b)≥1⇒ab∣a^(ϕ(b)) b^(ϕ(a))   a^(ϕ(b)) b^(ϕ(a)) ≡0[ab]  E⇔b^(ϕ(a)) +a^(ϕ(b)) −1≡[ab]⇔b^(ϕ(a)) +a^(ϕ(b)) ≡1[b]
aφ(b)1[b]aφ(b)10[b]bφ(a)1[a]bφ(a)10[a]..fermatTheorem(aφ(b)1)(bφ(a)1)0[ab]aφ(b)bφ(a)(aφ(b)+bφ(a)1)0[ab]..Eφ:NNφ(a),φ(b)1abaφ(b)bφ(a)aφ(b)bφ(a)0[ab]Ebφ(a)+aφ(b)1[ab]bφ(a)+aφ(b)1[b]
Commented by mnjuly1970 last updated on 14/Jan/22
thanks alot sir power ..
thanksalotsirpower..
Commented by mindispower last updated on 18/Jan/22
withe Pleasur sir
withePleasursir

Leave a Reply

Your email address will not be published. Required fields are marked *