Menu Close

A-B-pi-4-find-the-1-tanA-1-tanB-with-explanotory-solution-




Question Number 186590 by mustafazaheen last updated on 06/Feb/23
A+B=(π/4)     find the (1+tanA)(1+tanB)=?   with explanotory solution
A+B=π4findthe(1+tanA)(1+tanB)=?withexplanotorysolution
Answered by mr W last updated on 06/Feb/23
tan (A+B)=tan (π/4)=1  ((tan A+tan B)/(1−tan A tan B))=1  tan A+tan B=1−tan A tan B  1+tan A+tan B+tan A tan B=2  1+tan A+(1+tan A)tan B=2  (1+tan A)(1+tan B)=2 ✓
tan(A+B)=tanπ4=1tanA+tanB1tanAtanB=1tanA+tanB=1tanAtanB1+tanA+tanB+tanAtanB=21+tanA+(1+tanA)tanB=2(1+tanA)(1+tanB)=2
Answered by Frix last updated on 06/Feb/23
1+tan B =1+((sin B)/(cos B))=1+((sin ((π/4)−A))/(cos ((π/4)−A)))=  =1+(((cos A −sin A)/( (√2)))/((cos A +sin A)/( (√2))))=1+((cos A −sin A)/(cos A +sin A))=  =((2cos x)/(cos x +sin x))=(2/(1+tan A))  ⇒ answer is2
1+tanB=1+sinBcosB=1+sin(π4A)cos(π4A)==1+cosAsinA2cosA+sinA2=1+cosAsinAcosA+sinA==2cosxcosx+sinx=21+tanAansweris2
Answered by a.lgnaoui last updated on 06/Feb/23
(1+tanA)(1+tanB)=P  P=1+(tanA+tanB )+tan A×tanB  we know that   tan (A+B)=((tan A+tan B)/(1−tan A×tanB))  tanA+tanB=tan (A+B)[1−tan A×tan B]  =1−tan A×tan B  P=1+1−tanA×tanB+tan A×tan B =2    donc  (1+tan A)(1+tan B)=2
(1+tanA)(1+tanB)=\boldsymbolP\boldsymbolP=1+(tanA+tanB)+tanA×tanBweknowthattan(A+B)=tanA+tanB1tanA×tanBtanA+tanB=tan(A+B)[1tanA×tanB]=1tanA×tanB\boldsymbolP=1+1tanA×tanB+tanA×tanB=2donc(1+tanA)(1+tanB)=2

Leave a Reply

Your email address will not be published. Required fields are marked *