Menu Close

A-ball-falls-vertically-on-to-a-floor-with-momentum-p-and-then-bounces-repeatedly-the-coefficient-of-restitution-is-e-The-total-momentum-imparted-by-the-ball-to-the-floor-is-




Question Number 23556 by Tinkutara last updated on 01/Nov/17
A ball falls vertically on to a floor, with  momentum p, and then bounces  repeatedly, the coefficient of restitution  is e. The total momentum imparted by  the ball to the floor is
$$\mathrm{A}\:\mathrm{ball}\:\mathrm{falls}\:\mathrm{vertically}\:\mathrm{on}\:\mathrm{to}\:\mathrm{a}\:\mathrm{floor},\:\mathrm{with} \\ $$$$\mathrm{momentum}\:{p},\:\mathrm{and}\:\mathrm{then}\:\mathrm{bounces} \\ $$$$\mathrm{repeatedly},\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{restitution} \\ $$$$\mathrm{is}\:{e}.\:\mathrm{The}\:\mathrm{total}\:\mathrm{momentum}\:\mathrm{imparted}\:\mathrm{by} \\ $$$$\mathrm{the}\:\mathrm{ball}\:\mathrm{to}\:\mathrm{the}\:\mathrm{floor}\:\mathrm{is} \\ $$
Answered by ajfour last updated on 01/Nov/17
J_1 =m(ev_0 +v_0 )  J_2 =m(e^2 v_0 +ev_0 )  ..  ..  Σ_(i=1) ^∞ J_i  =mv_0 (1+e)[1+e+e^2 +...]            =(((1+e)/(1+e)))p .
$${J}_{\mathrm{1}} ={m}\left({ev}_{\mathrm{0}} +{v}_{\mathrm{0}} \right) \\ $$$${J}_{\mathrm{2}} ={m}\left({e}^{\mathrm{2}} {v}_{\mathrm{0}} +{ev}_{\mathrm{0}} \right) \\ $$$$.. \\ $$$$.. \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}{J}_{{i}} \:={mv}_{\mathrm{0}} \left(\mathrm{1}+{e}\right)\left[\mathrm{1}+{e}+{e}^{\mathrm{2}} +…\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:=\left(\frac{\mathrm{1}+{e}}{\mathrm{1}+{e}}\right){p}\:. \\ $$
Commented by Tinkutara last updated on 01/Nov/17
But why not J_1 =mv_0  only?
$$\mathrm{But}\:\mathrm{why}\:\mathrm{not}\:{J}_{\mathrm{1}} ={mv}_{\mathrm{0}} \:\mathrm{only}? \\ $$
Commented by ajfour last updated on 01/Nov/17
the ground did not just catch the  ball, it even threw it back with  speed ev_0 .  ⇒ change in momentum  brought about = m[ev_0 −(−v_0 )].
$${the}\:{ground}\:{did}\:{not}\:{just}\:{catch}\:{the} \\ $$$${ball},\:{it}\:{even}\:{threw}\:{it}\:{back}\:{with} \\ $$$${speed}\:{ev}_{\mathrm{0}} . \\ $$$$\Rightarrow\:{change}\:{in}\:{momentum} \\ $$$${brought}\:{about}\:=\:{m}\left[{ev}_{\mathrm{0}} −\left(−{v}_{\mathrm{0}} \right)\right]. \\ $$
Commented by Tinkutara last updated on 01/Nov/17
Thank you very much Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *