Menu Close

a-ball-is-droped-from-a-height-20-m-Given-that-it-rebounce-with-a-velocity-of-3-4-that-which-it-hit-the-ground-find-the-time-interval-between-the-first-and-second-rebounce-




Question Number 86479 by Rio Michael last updated on 28/Mar/20
a ball is droped from a height 20 m. Given that it  rebounce with a velocity of (3/4) that which it hit the ground  find the time interval between the first and second rebounce.
$$\mathrm{a}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{droped}\:\mathrm{from}\:\mathrm{a}\:\mathrm{height}\:\mathrm{20}\:\mathrm{m}.\:\mathrm{Given}\:\mathrm{that}\:\mathrm{it} \\ $$$$\mathrm{rebounce}\:\mathrm{with}\:\mathrm{a}\:\mathrm{velocity}\:\mathrm{of}\:\frac{\mathrm{3}}{\mathrm{4}}\:\mathrm{that}\:\mathrm{which}\:\mathrm{it}\:\mathrm{hit}\:\mathrm{the}\:\mathrm{ground} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{time}\:\mathrm{interval}\:\mathrm{between}\:\mathrm{the}\:\mathrm{first}\:\mathrm{and}\:\mathrm{second}\:\mathrm{rebounce}. \\ $$
Answered by mr W last updated on 29/Mar/20
the height after a rebounce is ((3/4))^2  of  the height before the rebounce.  h_0 =20 m  h_1 =((3/4))^2 20=11.25 m  between the first and second rebounce  the ball reaches a height of 11.25m  and falls down again. the time needed  is t_1 =2(√((2h_1 )/g))=2(√((2×11.25)/(10)))=3 sec
$${the}\:{height}\:{after}\:{a}\:{rebounce}\:{is}\:\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} \:{of} \\ $$$${the}\:{height}\:{before}\:{the}\:{rebounce}. \\ $$$${h}_{\mathrm{0}} =\mathrm{20}\:{m} \\ $$$${h}_{\mathrm{1}} =\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} \mathrm{20}=\mathrm{11}.\mathrm{25}\:{m} \\ $$$${between}\:{the}\:{first}\:{and}\:{second}\:{rebounce} \\ $$$${the}\:{ball}\:{reaches}\:{a}\:{height}\:{of}\:\mathrm{11}.\mathrm{25}{m} \\ $$$${and}\:{falls}\:{down}\:{again}.\:{the}\:{time}\:{needed} \\ $$$${is}\:{t}_{\mathrm{1}} =\mathrm{2}\sqrt{\frac{\mathrm{2}{h}_{\mathrm{1}} }{{g}}}=\mathrm{2}\sqrt{\frac{\mathrm{2}×\mathrm{11}.\mathrm{25}}{\mathrm{10}}}=\mathrm{3}\:{sec} \\ $$
Commented by Rio Michael last updated on 29/Mar/20
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *