Menu Close

A-ball-is-thrown-vertically-upward-with-velocity-20-m-s-from-a-rail-road-car-moving-with-a-velocity-5-m-s-horizontally-A-person-standing-on-the-ground-observes-its-motion-as-projectile-Find-maximum-




Question Number 15407 by Tinkutara last updated on 10/Jun/17
A ball is thrown vertically upward  with velocity 20 m/s from a rail road  car moving with a velocity 5 m/s  horizontally. A person standing on the  ground observes its motion as projectile.  Find maximum height attained by the  ball if point of projection is at a height  3 m from the ground.
$$\mathrm{A}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{thrown}\:\mathrm{vertically}\:\mathrm{upward} \\ $$$$\mathrm{with}\:\mathrm{velocity}\:\mathrm{20}\:\mathrm{m}/\mathrm{s}\:\mathrm{from}\:\mathrm{a}\:\mathrm{rail}\:\mathrm{road} \\ $$$$\mathrm{car}\:\mathrm{moving}\:\mathrm{with}\:\mathrm{a}\:\mathrm{velocity}\:\mathrm{5}\:\mathrm{m}/\mathrm{s} \\ $$$$\mathrm{horizontally}.\:\mathrm{A}\:\mathrm{person}\:\mathrm{standing}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{ground}\:\mathrm{observes}\:\mathrm{its}\:\mathrm{motion}\:\mathrm{as}\:\mathrm{projectile}. \\ $$$$\mathrm{Find}\:\mathrm{maximum}\:\mathrm{height}\:\mathrm{attained}\:\mathrm{by}\:\mathrm{the} \\ $$$$\mathrm{ball}\:\mathrm{if}\:\mathrm{point}\:\mathrm{of}\:\mathrm{projection}\:\mathrm{is}\:\mathrm{at}\:\mathrm{a}\:\mathrm{height} \\ $$$$\mathrm{3}\:\mathrm{m}\:\mathrm{from}\:\mathrm{the}\:\mathrm{ground}. \\ $$
Answered by mrW1 last updated on 10/Jun/17
y=3+20t−(1/2)×10t^2 =3+20t−5t^2   =23−5(t^2 −4t+4)=23−5(t−2)^2 ≤23  ⇒max. height =23 m
$$\mathrm{y}=\mathrm{3}+\mathrm{20t}−\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{10t}^{\mathrm{2}} =\mathrm{3}+\mathrm{20t}−\mathrm{5t}^{\mathrm{2}} \\ $$$$=\mathrm{23}−\mathrm{5}\left(\mathrm{t}^{\mathrm{2}} −\mathrm{4t}+\mathrm{4}\right)=\mathrm{23}−\mathrm{5}\left(\mathrm{t}−\mathrm{2}\right)^{\mathrm{2}} \leqslant\mathrm{23} \\ $$$$\Rightarrow\mathrm{max}.\:\mathrm{height}\:=\mathrm{23}\:\mathrm{m} \\ $$
Commented by Tinkutara last updated on 10/Jun/17
Thanks Sir!
$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *