Menu Close

A-balloon-moves-up-vertically-such-that-if-a-stone-is-projected-with-a-horizontal-velocity-u-relative-to-balloon-the-stone-always-hits-the-ground-at-a-fixed-point-at-a-distance-2u-2-g-horizontal




Question Number 18274 by Tinkutara last updated on 17/Jul/17
A balloon moves up vertically such  that if a stone is projected with a  horizontal velocity u relative to balloon,  the stone always hits the ground at a  fixed point at a distance ((2u^2 )/g) horizontally  away from it. Find the height of the  balloon as a function of time.
Aballoonmovesupverticallysuchthatifastoneisprojectedwithahorizontalvelocityurelativetoballoon,thestonealwayshitsthegroundatafixedpointatadistance2u2ghorizontallyawayfromit.Findtheheightoftheballoonasafunctionoftime.
Answered by mrW1 last updated on 19/Jul/17
v=(dy/dt)  T=time the stone needs to hit the ground  uT=((2u^2 )/g) as given  ⇒T=((2u)/g)  y=−vT+(1/2)gT^2   ⇒y=−((2u)/g)×(dy/dt)+(1/2)g×((4u^2 )/g^2 )=−((2u)/g)((dy/dt)−u)  ⇒(dy/dt)=u−(g/(2u))y  (dy/(u−(g/(2u))y))=dt  −((2u)/g)ln (u−(g/(2u))y)=t+C  y=0 at t=0  ⇒C=−((2u)/g)ln u  ((2u)/g)[ln u−ln (u−(g/(2u))y)]=t  ((2u)/g)[ln (u/(u−(g/(2u))y))]=t  (u/(u−(g/(2u))y))=e^((g/(2u))t)   u−(g/(2u))y=ue^(−(g/(2u))t)   ⇒y=((2u^2 )/g)(1−e^(−((gt)/(2u))) )
v=dydtT=timethestoneneedstohitthegrounduT=2u2gasgivenT=2ugy=vT+12gT2y=2ug×dydt+12g×4u2g2=2ug(dydtu)dydt=ug2uydyug2uy=dt2ugln(ug2uy)=t+Cy=0att=0C=2uglnu2ug[lnuln(ug2uy)]=t2ug[lnuug2uy]=tuug2uy=eg2utug2uy=ueg2uty=2u2g(1egt2u)
Commented by Tinkutara last updated on 19/Jul/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *