Menu Close

A-balloon-starts-rising-from-the-surface-of-earth-The-ascension-rate-is-constant-and-is-equal-to-v-0-Due-to-wind-the-balloon-gathers-horizontal-velocity-component-v-x-ay-where-a-is-a-positive-c




Question Number 18268 by Tinkutara last updated on 17/Jul/17
A balloon starts rising from the surface  of earth. The ascension rate is constant  and is equal to v_0 . Due to wind the  balloon gathers horizontal velocity  component v_x  = ay, where a is a positive  constant and y is the height of ascent.  Find  (i) The horizontal drift of the balloon  x(y),  (ii) The total, tangential and normal  accelerations of the balloon.
Aballoonstartsrisingfromthesurfaceofearth.Theascensionrateisconstantandisequaltov0.Duetowindtheballoongathershorizontalvelocitycomponentvx=ay,whereaisapositiveconstantandyistheheightofascent.Find(i)Thehorizontaldriftoftheballoonx(y),(ii)Thetotal,tangentialandnormalaccelerationsoftheballoon.
Answered by ajfour last updated on 16/Aug/17
Commented by Tinkutara last updated on 17/Aug/17
Thank you very much Sir!
ThankyouverymuchSir!
Commented by ajfour last updated on 16/Aug/17
  y=v_0 t  ,  v_x =ay=av_0 t   so    ∫_0 ^(  x) dx =∫_0 ^(  t) av_0 tdt =((av_0 t^2 )/2)      ⇒     x=((ay^2 )/(2v_0 ))   .         a_y =0 ;    a_(net) ^� =((dv_x /dt))i^�  =av_0 i^�  .        a_t =∣a_(nrt) ^� ∣cos θ  =av_0 (v_x /( (√(v_x ^2 +v_y ^2 ))))     a_t  =((av_0 (av_0 t))/( (√((av_0 t)^2 +v_0 ^2 )))) =((av_0 t)/( (√(a^2 t^2 +1)))) .    a_N =∣a_(net) ∣sin θ =av_0 (v_y /( (√(v_x ^2 +v_y ^2 ))))     a_N =((av_0 )/( (√(a^2 t^2 +1))))  .
y=v0t,vx=ay=av0tso0xdx=0tav0tdt=av0t22x=ay22v0.ay=0;a¯net=(dvxdt)i^=av0i^.at=∣a¯nrtcosθ=av0vxvx2+vy2at=av0(av0t)(av0t)2+v02=av0ta2t2+1.aN=∣anetsinθ=av0vyvx2+vy2aN=av0a2t2+1.

Leave a Reply

Your email address will not be published. Required fields are marked *