Question Number 175280 by naka3546 last updated on 26/Aug/22
$$\mathrm{A}\:\mathrm{biology}\:\:\mathrm{class}\:\mathrm{at}\:\mathrm{central}\:\:\mathrm{high}\:\:\mathrm{school} \\ $$$$\mathrm{predicted}\:\:\mathrm{that}\:\:\mathrm{a}\:\:\mathrm{local}\:\:\mathrm{population}\:\:\mathrm{of}\:\:\:\mathrm{animals} \\ $$$$\mathrm{will}\:\:\mathrm{double}\:\:\mathrm{in}\:\:\mathrm{size}\:\:\mathrm{every}\:\:\mathrm{12}\:\:\mathrm{years}. \\ $$$$\mathrm{The}\:\:\mathrm{population}\:\:\mathrm{at}\:\:\mathrm{the}\:\:\mathrm{beginning}\:\:\mathrm{of}\:\:\mathrm{2014} \\ $$$$\mathrm{was}\:\:\mathrm{estimated}\:\:\mathrm{to}\:\mathrm{be}\:\:\mathrm{50}\:\:\mathrm{animals}. \\ $$$$\mathrm{If}\:\:{P}\:\:\mathrm{represents}\:\:\mathrm{the}\:\:\mathrm{population}\:\:{n}\:\:\mathrm{years}\:\:\mathrm{after}\:\:\mathrm{2014}. \\ $$$$\mathrm{Find}\:\:\mathrm{the}\:\:\mathrm{equations}\:\:\mathrm{represents}\:\:\mathrm{the}\:\:\mathrm{class}\:\:\mathrm{model} \\ $$$$\mathrm{of}\:\:\mathrm{the}\:\:\mathrm{population}\:\:\mathrm{over}\:\:\mathrm{time}? \\ $$
Answered by MJS_new last updated on 26/Aug/22
$${P}=\mathrm{50}×\mathrm{2}^{{n}/\mathrm{12}} \\ $$
Answered by FelipeLz last updated on 26/Aug/22
$$\frac{{dP}}{{dn}}\:=\:{kP}\:\Rightarrow\:{P}\left({n}\right)\:=\:{P}_{\mathrm{0}} {e}^{{kn}} \\ $$$${P}\left({n}+\mathrm{12}\right)\:=\:\mathrm{2}{P}\left({n}\right) \\ $$$${P}_{\mathrm{0}} {e}^{{k}\left({n}+\mathrm{12}\right)} \:=\:\mathrm{2}{P}_{\mathrm{0}} {e}^{{kn}} \\ $$$${e}^{{k}\left({n}+\mathrm{12}\right)} \:=\:\mathrm{2}{e}^{{kn}} \\ $$$${k}\left({n}+\mathrm{12}\right)\:=\:\mathrm{ln}\left(\mathrm{2}\right)+{kn} \\ $$$$\mathrm{12}{k}\:=\:\mathrm{ln}\left(\mathrm{2}\right)\:\Rightarrow\:{k}\:=\:\frac{\mathrm{ln}\left(\mathrm{2}\right)}{\mathrm{12}} \\ $$$${P}_{\mathrm{0}} \:=\:\mathrm{50} \\ $$$${P}\left({n}\right)\:=\:\mathrm{50}{e}^{\frac{\mathrm{ln}\left(\mathrm{2}\right){n}}{\mathrm{12}}} \:=\:\mathrm{50}\sqrt[{\mathrm{12}}]{\mathrm{2}^{{n}} } \\ $$
Commented by MJS_new last updated on 26/Aug/22
$$\mathrm{50}\sqrt[{\mathrm{12}}]{\mathrm{2}^{{n}} }=\mathrm{50}×\mathrm{2}^{{n}/\mathrm{12}} \\ $$
Commented by naka3546 last updated on 27/Aug/22
$$\mathrm{Thank}\:\:\mathrm{you},\:\:\mathrm{sir}. \\ $$
Commented by peter frank last updated on 28/Aug/22
$$\mathrm{thank}\:\mathrm{you} \\ $$