Menu Close

A-blind-man-is-to-place-5-letters-into-5-pigeon-holes-how-many-ways-can-4-of-the-letters-be-wrongly-placed-note-that-only-one-letter-must-be-in-a-pigeon-hole-




Question Number 111732 by Aina Samuel Temidayo last updated on 04/Sep/20
A blind man is to place 5 letters into 5  pigeon holes, how many ways can 4 of  the letters be wrongly placed?  (note that only one letter must be in a  pigeon hole)
$$\mathrm{A}\:\mathrm{blind}\:\mathrm{man}\:\mathrm{is}\:\mathrm{to}\:\mathrm{place}\:\mathrm{5}\:\mathrm{letters}\:\mathrm{into}\:\mathrm{5} \\ $$$$\mathrm{pigeon}\:\mathrm{holes},\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{4}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{letters}\:\mathrm{be}\:\mathrm{wrongly}\:\mathrm{placed}? \\ $$$$\left(\mathrm{note}\:\mathrm{that}\:\mathrm{only}\:\mathrm{one}\:\mathrm{letter}\:\mathrm{must}\:\mathrm{be}\:\mathrm{in}\:\mathrm{a}\right. \\ $$$$\left.\mathrm{pigeon}\:\mathrm{hole}\right) \\ $$
Answered by mr W last updated on 04/Sep/20
one letter is correct arranged:  there is 5 ways  the other 4 letters are disarranged:  there are !4=9 ways    ⇒5×9=45 ways
$${one}\:{letter}\:{is}\:{correct}\:{arranged}: \\ $$$${there}\:{is}\:\mathrm{5}\:{ways} \\ $$$${the}\:{other}\:\mathrm{4}\:{letters}\:{are}\:{disarranged}: \\ $$$${there}\:{are}\:!\mathrm{4}=\mathrm{9}\:{ways} \\ $$$$ \\ $$$$\Rightarrow\mathrm{5}×\mathrm{9}=\mathrm{45}\:{ways} \\ $$
Commented by Aina Samuel Temidayo last updated on 04/Sep/20
Thanks.
$$\mathrm{Thanks}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *