Menu Close

A-boat-travels-30km-upstream-and-44km-downstream-in-10-hours-in-13-hours-it-can-travel-40km-upstream-and-55km-downstream-Determine-the-speed-of-the-stream-and-that-of-the-boat-in-still-water-i




Question Number 56503 by otchereabdullai@gmail.com last updated on 17/Mar/19
A boat travels 30km upstream and   44km downstream in 10 hours.   in 13 hours it can travel 40km upstream  and 55km downstream. Determine the  speed of the stream  and that of the   boat in still water. (in km/hr)
$$\mathrm{A}\:\mathrm{boat}\:\mathrm{travels}\:\mathrm{30km}\:\mathrm{upstream}\:\mathrm{and}\: \\ $$$$\mathrm{44km}\:\mathrm{downstream}\:\mathrm{in}\:\mathrm{10}\:\mathrm{hours}.\: \\ $$$$\mathrm{in}\:\mathrm{13}\:\mathrm{hours}\:\mathrm{it}\:\mathrm{can}\:\mathrm{travel}\:\mathrm{40km}\:\mathrm{upstream} \\ $$$$\mathrm{and}\:\mathrm{55km}\:\mathrm{downstream}.\:\mathrm{Determine}\:\mathrm{the} \\ $$$$\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{stream}\:\:\mathrm{and}\:\mathrm{that}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{boat}\:\mathrm{in}\:\mathrm{still}\:\mathrm{water}.\:\left(\mathrm{in}\:\mathrm{km}/\mathrm{hr}\right) \\ $$
Answered by MJS last updated on 17/Mar/19
((30)/((v_b −v_s )))+((44)/((v_b +v_s )))=10  ⇒ 5v_b ^2 −5v_s ^2 −37v_b +7v_s =0  (1)  ((40)/((v_b −v_s )))+((55)/((v_b +v_s )))=13  ⇒ 13v_b ^2 −13v_s ^2 −95v_b +15v_s =0  (2)  −((13)/5)(1)+(2)  (6/5)v_b −((16)/5)v_s =0 ⇒ v_s =(3/8)v_b   insert in (1)  ((275)/(64))v_b ^2 −((275)/8)v_b =0  v_b >0 ⇒ v_b =8km/hr ⇒ v_s =3km/hr
$$\frac{\mathrm{30}}{\left({v}_{{b}} −{v}_{{s}} \right)}+\frac{\mathrm{44}}{\left({v}_{{b}} +{v}_{{s}} \right)}=\mathrm{10} \\ $$$$\Rightarrow\:\mathrm{5}{v}_{{b}} ^{\mathrm{2}} −\mathrm{5}{v}_{{s}} ^{\mathrm{2}} −\mathrm{37}{v}_{{b}} +\mathrm{7}{v}_{{s}} =\mathrm{0}\:\:\left(\mathrm{1}\right) \\ $$$$\frac{\mathrm{40}}{\left({v}_{{b}} −{v}_{{s}} \right)}+\frac{\mathrm{55}}{\left({v}_{{b}} +{v}_{{s}} \right)}=\mathrm{13} \\ $$$$\Rightarrow\:\mathrm{13}{v}_{{b}} ^{\mathrm{2}} −\mathrm{13}{v}_{{s}} ^{\mathrm{2}} −\mathrm{95}{v}_{{b}} +\mathrm{15}{v}_{{s}} =\mathrm{0}\:\:\left(\mathrm{2}\right) \\ $$$$−\frac{\mathrm{13}}{\mathrm{5}}\left(\mathrm{1}\right)+\left(\mathrm{2}\right) \\ $$$$\frac{\mathrm{6}}{\mathrm{5}}{v}_{{b}} −\frac{\mathrm{16}}{\mathrm{5}}{v}_{{s}} =\mathrm{0}\:\Rightarrow\:{v}_{{s}} =\frac{\mathrm{3}}{\mathrm{8}}{v}_{{b}} \\ $$$$\mathrm{insert}\:\mathrm{in}\:\left(\mathrm{1}\right) \\ $$$$\frac{\mathrm{275}}{\mathrm{64}}{v}_{{b}} ^{\mathrm{2}} −\frac{\mathrm{275}}{\mathrm{8}}{v}_{{b}} =\mathrm{0} \\ $$$${v}_{{b}} >\mathrm{0}\:\Rightarrow\:{v}_{{b}} =\mathrm{8}{km}/{hr}\:\Rightarrow\:{v}_{{s}} =\mathrm{3}{km}/{hr} \\ $$
Commented by otchereabdullai@gmail.com last updated on 18/Mar/19
thanks prof
$$\mathrm{thanks}\:\mathrm{prof} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *