Menu Close

A-body-is-projected-at-an-angle-35-with-an-initial-speed-of-45m-s-What-is-the-velocity-of-the-body-after-2s-and-the-angle-made-with-the-horizontal-axis-g-9-81ms-2-




Question Number 31148 by NECx last updated on 03/Mar/18
A body is projected at an angle  35° with an initial speed of 45m/s.  What is the velocity of the body  after 2s and the angle made with  the horizontal axis? [g=9.81ms^(−2) ]
$${A}\:{body}\:{is}\:{projected}\:{at}\:{an}\:{angle} \\ $$$$\mathrm{35}°\:{with}\:{an}\:{initial}\:{speed}\:{of}\:\mathrm{45}{m}/{s}. \\ $$$${What}\:{is}\:{the}\:{velocity}\:{of}\:{the}\:{body} \\ $$$${after}\:\mathrm{2}{s}\:{and}\:{the}\:{angle}\:{made}\:{with} \\ $$$${the}\:{horizontal}\:{axis}?\:\left[{g}=\mathrm{9}.\mathrm{81}{ms}^{−\mathrm{2}} \right] \\ $$
Commented by NECx last updated on 03/Mar/18
for the velocity in time t, we have   V(t)=usin θ−gt  v(2)=45sin35 − 9.81×2      =25.81094−19.62       =6.19m/s    then I got confused on seeing angle  made with the horizontal.Please  help. Thanks
$${for}\:{the}\:{velocity}\:{in}\:{time}\:{t},\:{we}\:{have} \\ $$$$\:{V}\left({t}\right)={u}\mathrm{sin}\:\theta−{gt} \\ $$$${v}\left(\mathrm{2}\right)=\mathrm{45}{sin}\mathrm{35}\:−\:\mathrm{9}.\mathrm{81}×\mathrm{2} \\ $$$$\:\:\:\:=\mathrm{25}.\mathrm{81094}−\mathrm{19}.\mathrm{62} \\ $$$$\:\:\:\:\:=\mathrm{6}.\mathrm{19}{m}/{s} \\ $$$$ \\ $$$${then}\:{I}\:{got}\:{confused}\:{on}\:{seeing}\:{angle} \\ $$$${made}\:{with}\:{the}\:{horizontal}.{Please} \\ $$$${help}.\:{Thanks} \\ $$
Answered by mrW2 last updated on 03/Mar/18
u=45 m/s  u_x =45 cos 35°  u_y =45 sin 35°  v_x (t)=u_x   v_y (t)=u_y −gt  v(t)=(√(v_x ^2 +v_y ^2 ))  tan θ(t)=(v_y /v_x )  θ(t)=tan^(−1) ((v_y /v_x ))    at t=2 s:  v_x (2)=45 cos 35°=36.86 m/s  v_y (2)=45 sin 35°−9.81×2=6.19 m/s  v(2)=(√(36.86^2 +6.19^2 ))=37.4 m/s  θ(2)=tan^(−1) ((6.19)/(36.86))=9.5°
$${u}=\mathrm{45}\:{m}/{s} \\ $$$${u}_{{x}} =\mathrm{45}\:\mathrm{cos}\:\mathrm{35}° \\ $$$${u}_{{y}} =\mathrm{45}\:\mathrm{sin}\:\mathrm{35}° \\ $$$${v}_{{x}} \left({t}\right)={u}_{{x}} \\ $$$${v}_{{y}} \left({t}\right)={u}_{{y}} −{gt} \\ $$$${v}\left({t}\right)=\sqrt{{v}_{{x}} ^{\mathrm{2}} +{v}_{{y}} ^{\mathrm{2}} } \\ $$$$\mathrm{tan}\:\theta\left({t}\right)=\frac{{v}_{{y}} }{{v}_{{x}} } \\ $$$$\theta\left({t}\right)=\mathrm{tan}^{−\mathrm{1}} \left(\frac{{v}_{{y}} }{{v}_{{x}} }\right) \\ $$$$ \\ $$$${at}\:{t}=\mathrm{2}\:{s}: \\ $$$${v}_{{x}} \left(\mathrm{2}\right)=\mathrm{45}\:\mathrm{cos}\:\mathrm{35}°=\mathrm{36}.\mathrm{86}\:{m}/{s} \\ $$$${v}_{{y}} \left(\mathrm{2}\right)=\mathrm{45}\:\mathrm{sin}\:\mathrm{35}°−\mathrm{9}.\mathrm{81}×\mathrm{2}=\mathrm{6}.\mathrm{19}\:{m}/{s} \\ $$$${v}\left(\mathrm{2}\right)=\sqrt{\mathrm{36}.\mathrm{86}^{\mathrm{2}} +\mathrm{6}.\mathrm{19}^{\mathrm{2}} }=\mathrm{37}.\mathrm{4}\:{m}/{s} \\ $$$$\theta\left(\mathrm{2}\right)=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{6}.\mathrm{19}}{\mathrm{36}.\mathrm{86}}=\mathrm{9}.\mathrm{5}° \\ $$
Commented by NECx last updated on 03/Mar/18
thank you so much sir
$${thank}\:{you}\:{so}\:{much}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *