Menu Close

A-body-rolls-down-a-slope-from-a-height-of-100m-the-velocity-at-the-foot-of-the-slope-is-20-m-s-What-percentage-of-the-P-E-is-converted-in-K-E-Answer-20-




Question Number 28905 by tawa tawa last updated on 01/Feb/18
A body rolls down a slope from a height of  100m. the velocity at the foot of the  slope is  20 m/s.  What percentage of the P.E  is converted in  K.E  ?    Answer:     20%
$$\mathrm{A}\:\mathrm{body}\:\mathrm{rolls}\:\mathrm{down}\:\mathrm{a}\:\mathrm{slope}\:\mathrm{from}\:\mathrm{a}\:\mathrm{height}\:\mathrm{of}\:\:\mathrm{100m}.\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{at}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{slope}\:\mathrm{is}\:\:\mathrm{20}\:\mathrm{m}/\mathrm{s}.\:\:\mathrm{What}\:\mathrm{percentage}\:\mathrm{of}\:\mathrm{the}\:\boldsymbol{\mathrm{P}}.\boldsymbol{\mathrm{E}}\:\:\mathrm{is}\:\mathrm{converted}\:\mathrm{in}\:\:\boldsymbol{\mathrm{K}}.\boldsymbol{\mathrm{E}}\:\:? \\ $$$$ \\ $$$$\boldsymbol{\mathrm{A}}\mathrm{nswer}:\:\:\:\:\:\mathrm{20\%} \\ $$
Answered by mrW2 last updated on 01/Feb/18
PE=mgh  KE=(1/2)mv^2 +(1/2)I(v^2 /R^2 )=(m/2)(1+(I/(mR^2 )))v^2   α=((KE)/(PE))=(v^2 /(2gh))(1+(I/(mR^2 )))    For a solid ball: I=(2/5)mR^2   ⇒α=(v^2 /(2gh))(1+(2/5))=((20^2 )/(2×10×100))×1.4=0.2×1.4=0.28=28%    For a hollow ball: I=(2/3)mR^2   ⇒α=(v^2 /(2gh))(1+(2/3))=0.2×1.67=0.34=34%    For a disc (cylinder): I=(1/2)mR^2   ⇒α=(v^2 /(2gh))(1+(1/2))=0.2×1.5=0.30=30%    For a sliding object (without rotation): I=0  ⇒α=(v^2 /(2gh))(1+0)=0.2×1.0=0.20=20%
$${PE}={mgh} \\ $$$${KE}=\frac{\mathrm{1}}{\mathrm{2}}{mv}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{I}\frac{{v}^{\mathrm{2}} }{{R}^{\mathrm{2}} }=\frac{{m}}{\mathrm{2}}\left(\mathrm{1}+\frac{{I}}{{mR}^{\mathrm{2}} }\right){v}^{\mathrm{2}} \\ $$$$\alpha=\frac{{KE}}{{PE}}=\frac{{v}^{\mathrm{2}} }{\mathrm{2}{gh}}\left(\mathrm{1}+\frac{{I}}{{mR}^{\mathrm{2}} }\right) \\ $$$$ \\ $$$${For}\:{a}\:{solid}\:{ball}:\:{I}=\frac{\mathrm{2}}{\mathrm{5}}{mR}^{\mathrm{2}} \\ $$$$\Rightarrow\alpha=\frac{{v}^{\mathrm{2}} }{\mathrm{2}{gh}}\left(\mathrm{1}+\frac{\mathrm{2}}{\mathrm{5}}\right)=\frac{\mathrm{20}^{\mathrm{2}} }{\mathrm{2}×\mathrm{10}×\mathrm{100}}×\mathrm{1}.\mathrm{4}=\mathrm{0}.\mathrm{2}×\mathrm{1}.\mathrm{4}=\mathrm{0}.\mathrm{28}=\mathrm{28\%} \\ $$$$ \\ $$$${For}\:{a}\:{hollow}\:{ball}:\:{I}=\frac{\mathrm{2}}{\mathrm{3}}{mR}^{\mathrm{2}} \\ $$$$\Rightarrow\alpha=\frac{{v}^{\mathrm{2}} }{\mathrm{2}{gh}}\left(\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}}\right)=\mathrm{0}.\mathrm{2}×\mathrm{1}.\mathrm{67}=\mathrm{0}.\mathrm{34}=\mathrm{34\%} \\ $$$$ \\ $$$${For}\:{a}\:{disc}\:\left({cylinder}\right):\:{I}=\frac{\mathrm{1}}{\mathrm{2}}{mR}^{\mathrm{2}} \\ $$$$\Rightarrow\alpha=\frac{{v}^{\mathrm{2}} }{\mathrm{2}{gh}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{0}.\mathrm{2}×\mathrm{1}.\mathrm{5}=\mathrm{0}.\mathrm{30}=\mathrm{30\%} \\ $$$$ \\ $$$${For}\:{a}\:{sliding}\:{object}\:\left({without}\:{rotation}\right):\:{I}=\mathrm{0} \\ $$$$\Rightarrow\alpha=\frac{{v}^{\mathrm{2}} }{\mathrm{2}{gh}}\left(\mathrm{1}+\mathrm{0}\right)=\mathrm{0}.\mathrm{2}×\mathrm{1}.\mathrm{0}=\mathrm{0}.\mathrm{20}=\mathrm{20\%} \\ $$
Commented by tawa tawa last updated on 01/Feb/18
God bless you sir. i really appreciate.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$
Commented by NECx last updated on 01/Feb/18
This is Wonderful.
$$\mathrm{T}{his}\:{is}\:\mathbb{W}\boldsymbol{{onderful}}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *