Menu Close

A-box-contains-4-black-5-white-and-6-red-shirts-3-are-drawn-from-the-box-one-after-the-other-without-replacement-Find-the-proability-that-two-of-the-same-color-and-one-a-different-color-




Question Number 128103 by byaw last updated on 04/Jan/21
  A box contains 4 black 5 white  and 6 red shirts. 3 are drawn from  the box one after the other   without replacement. Find the  proability that two of the same  color and one a different color.
$$ \\ $$$$\mathrm{A}\:\mathrm{box}\:\mathrm{contains}\:\mathrm{4}\:\mathrm{black}\:\mathrm{5}\:\mathrm{white} \\ $$$$\mathrm{and}\:\mathrm{6}\:\mathrm{red}\:\mathrm{shirts}.\:\mathrm{3}\:\mathrm{are}\:\mathrm{drawn}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{box}\:\mathrm{one}\:\mathrm{after}\:\mathrm{the}\:\mathrm{other}\: \\ $$$$\mathrm{without}\:\mathrm{replacement}.\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{proability}\:\mathrm{that}\:\mathrm{two}\:\mathrm{of}\:\mathrm{the}\:\mathrm{same} \\ $$$$\mathrm{color}\:\mathrm{and}\:\mathrm{one}\:\mathrm{a}\:\mathrm{different}\:\mathrm{color}. \\ $$
Answered by liberty last updated on 04/Jan/21
A = {(2b,1w),(2b,1r),(2r,1w),(2r,1b),(2w,1b),(2w,1r)}  p(A) = 3×((4/(15)).(3/(14))((5/(13))+(6/(13)))+(6/(15)).(5/(14))((5/(13))+(4/(13)))+(5/(15)).(4/(14))((4/(13))+(6/(13))))              = 3×(((12.11)/(15.14.13))+((30.9)/(15.14.13))+((20.10)/(15.14.13)))             = ((132+270+200)/(14.13.5)) =((602)/(910)) = ((301)/(455))=((43)/(65))
$$\mathrm{A}\:=\:\left\{\left(\mathrm{2b},\mathrm{1w}\right),\left(\mathrm{2b},\mathrm{1r}\right),\left(\mathrm{2r},\mathrm{1w}\right),\left(\mathrm{2r},\mathrm{1b}\right),\left(\mathrm{2w},\mathrm{1b}\right),\left(\mathrm{2w},\mathrm{1r}\right)\right\} \\ $$$$\mathrm{p}\left(\mathrm{A}\right)\:=\:\mathrm{3}×\left(\frac{\mathrm{4}}{\mathrm{15}}.\frac{\mathrm{3}}{\mathrm{14}}\left(\frac{\mathrm{5}}{\mathrm{13}}+\frac{\mathrm{6}}{\mathrm{13}}\right)+\frac{\mathrm{6}}{\mathrm{15}}.\frac{\mathrm{5}}{\mathrm{14}}\left(\frac{\mathrm{5}}{\mathrm{13}}+\frac{\mathrm{4}}{\mathrm{13}}\right)+\frac{\mathrm{5}}{\mathrm{15}}.\frac{\mathrm{4}}{\mathrm{14}}\left(\frac{\mathrm{4}}{\mathrm{13}}+\frac{\mathrm{6}}{\mathrm{13}}\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{3}×\left(\frac{\mathrm{12}.\mathrm{11}}{\mathrm{15}.\mathrm{14}.\mathrm{13}}+\frac{\mathrm{30}.\mathrm{9}}{\mathrm{15}.\mathrm{14}.\mathrm{13}}+\frac{\mathrm{20}.\mathrm{10}}{\mathrm{15}.\mathrm{14}.\mathrm{13}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{132}+\mathrm{270}+\mathrm{200}}{\mathrm{14}.\mathrm{13}.\mathrm{5}}\:=\frac{\mathrm{602}}{\mathrm{910}}\:=\:\frac{\mathrm{301}}{\mathrm{455}}=\frac{\mathrm{43}}{\mathrm{65}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *