Menu Close

a-box-contains-4-blue-3-green-and-2-red-identicall-balls-if-two-balls-are-selected-at-random-without-replacement-what-is-the-probability-that-two-balls-be-of-the-same-colours-




Question Number 106292 by bemath last updated on 04/Aug/20
a box contains 4 blue, 3 green and 2 red identicall balls.   if two balls are selected at random without   replacement , what is the probability  that two balls be of the same colours?
$$\mathrm{a}\:\mathrm{box}\:\mathrm{contains}\:\mathrm{4}\:\mathrm{blue},\:\mathrm{3}\:\mathrm{green}\:\mathrm{and}\:\mathrm{2}\:\mathrm{red}\:\mathrm{identicall}\:\mathrm{balls}.\: \\ $$$$\mathrm{if}\:\mathrm{two}\:\mathrm{balls}\:\mathrm{are}\:\mathrm{selected}\:\mathrm{at}\:\mathrm{random}\:\mathrm{without}\: \\ $$$$\mathrm{replacement}\:,\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{probability} \\ $$$$\mathrm{that}\:\mathrm{two}\:\mathrm{balls}\:\mathrm{be}\:\mathrm{of}\:\mathrm{the}\:\mathrm{same}\:\mathrm{colours}? \\ $$
Answered by bobhans last updated on 04/Aug/20
p(A) = ((C _2^4  + C _2^3  + C_2 ^2 )/C_2 ^9 ) = ((12+3+1)/(36))=((16)/(36))=(4/9)
$$\mathrm{p}\left(\mathrm{A}\right)\:=\:\frac{\mathrm{C}\:_{\mathrm{2}} ^{\mathrm{4}} \:+\:\mathrm{C}\:_{\mathrm{2}} ^{\mathrm{3}} \:+\:\mathrm{C}_{\mathrm{2}} ^{\mathrm{2}} }{\mathrm{C}_{\mathrm{2}} ^{\mathrm{9}} }\:=\:\frac{\mathrm{12}+\mathrm{3}+\mathrm{1}}{\mathrm{36}}=\frac{\mathrm{16}}{\mathrm{36}}=\frac{\mathrm{4}}{\mathrm{9}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *