Menu Close

A-box-P-contains-4-white-2-green-and-3-blue-cards-Another-box-Q-contains-2-white-3-green-and-2-blue-cards-A-card-is-picked-at-random-from-P-and-placed-in-Q-A-card-is-then-picked-from-Q-




Question Number 145831 by nadovic last updated on 08/Jul/21
 A box P, contains 4 white, 2 green and    3 blue cards. Another box Q, contains   2 white, 3 green and 2 blue cards. A card   is picked at random from P and placed   in Q. A card is then picked from Q.   Find the probability that the    (a)  card picked from Q is white.    (b)  cards picked from P and Q are of            the same colour.
$$\:\mathrm{A}\:\mathrm{box}\:\boldsymbol{{P}},\:\mathrm{contains}\:\mathrm{4}\:\mathrm{white},\:\mathrm{2}\:\mathrm{green}\:\mathrm{and}\: \\ $$$$\:\mathrm{3}\:\mathrm{blue}\:\mathrm{cards}.\:\mathrm{Another}\:\mathrm{box}\:\boldsymbol{{Q}},\:\mathrm{contains} \\ $$$$\:\mathrm{2}\:\mathrm{white},\:\mathrm{3}\:\mathrm{green}\:\mathrm{and}\:\mathrm{2}\:\mathrm{blue}\:\mathrm{cards}.\:\mathrm{A}\:\mathrm{card} \\ $$$$\:\mathrm{is}\:\mathrm{picked}\:\mathrm{at}\:\mathrm{random}\:\mathrm{from}\:\boldsymbol{{P}}\:\mathrm{and}\:\mathrm{placed} \\ $$$$\:\mathrm{in}\:\boldsymbol{{Q}}.\:\mathrm{A}\:\mathrm{card}\:\mathrm{is}\:\mathrm{then}\:\mathrm{picked}\:\mathrm{from}\:\boldsymbol{{Q}}. \\ $$$$\:\mathrm{Find}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{the} \\ $$$$\:\:\left({a}\right)\:\:\mathrm{card}\:\mathrm{picked}\:\mathrm{from}\:\boldsymbol{{Q}}\:\mathrm{is}\:\mathrm{white}. \\ $$$$\:\:\left({b}\right)\:\:\mathrm{cards}\:\mathrm{picked}\:\mathrm{from}\:\boldsymbol{{P}}\:\mathrm{and}\:\boldsymbol{{Q}}\:\mathrm{are}\:\mathrm{of} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{the}\:\mathrm{same}\:\mathrm{colour}. \\ $$
Answered by bramlexs22 last updated on 08/Jul/21
(a) P(A)=(4/9)×(3/8)+(5/9)×(2/8)=((22)/(72))          P(A)=((11)/(36))
$$\left(\mathrm{a}\right)\:\mathrm{P}\left(\mathrm{A}\right)=\frac{\mathrm{4}}{\mathrm{9}}×\frac{\mathrm{3}}{\mathrm{8}}+\frac{\mathrm{5}}{\mathrm{9}}×\frac{\mathrm{2}}{\mathrm{8}}=\frac{\mathrm{22}}{\mathrm{72}} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{P}\left(\mathrm{A}\right)=\frac{\mathrm{11}}{\mathrm{36}} \\ $$
Answered by bramlexs22 last updated on 08/Jul/21
(b) P(A)=(4/9)×(3/8)+(2/9)×(4/8)+(3/9)×(3/8)    P(A)=((12+8+9)/(72))=((29)/(72))
$$\left(\mathrm{b}\right)\:\mathrm{P}\left(\mathrm{A}\right)=\frac{\mathrm{4}}{\mathrm{9}}×\frac{\mathrm{3}}{\mathrm{8}}+\frac{\mathrm{2}}{\mathrm{9}}×\frac{\mathrm{4}}{\mathrm{8}}+\frac{\mathrm{3}}{\mathrm{9}}×\frac{\mathrm{3}}{\mathrm{8}} \\ $$$$\:\:\mathrm{P}\left(\mathrm{A}\right)=\frac{\mathrm{12}+\mathrm{8}+\mathrm{9}}{\mathrm{72}}=\frac{\mathrm{29}}{\mathrm{72}} \\ $$
Commented by nadovic last updated on 09/Jul/21
Thank you Sir
$${Thank}\:{you}\:{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *