Menu Close

A-bullet-of-mass-1kg-is-fired-and-get-embedded-into-a-block-of-wood-of-mass-1kg-initially-at-rest-the-velocity-of-the-bullet-before-collision-is-90m-s-1-What-is-the-velocity-of-the-system-after-colli




Question Number 183036 by Mastermind last updated on 18/Dec/22
A bullet of mass 1kg is fired and get  embedded into a block of wood of  mass 1kg initially at rest the velocity  of the bullet before collision is 90m/s  1) What is the velocity of the system  after collision?  2) Calculate the kinetic energy before  and after the collision.  3)How much energy is lost in collision?
$$\mathrm{A}\:\mathrm{bullet}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{1kg}\:\mathrm{is}\:\mathrm{fired}\:\mathrm{and}\:\mathrm{get} \\ $$$$\mathrm{embedded}\:\mathrm{into}\:\mathrm{a}\:\mathrm{block}\:\mathrm{of}\:\mathrm{wood}\:\mathrm{of} \\ $$$$\mathrm{mass}\:\mathrm{1kg}\:\mathrm{initially}\:\mathrm{at}\:\mathrm{rest}\:\mathrm{the}\:\mathrm{velocity} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{bullet}\:\mathrm{before}\:\mathrm{collision}\:\mathrm{is}\:\mathrm{90m}/\mathrm{s} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{the}\:\mathrm{system} \\ $$$$\mathrm{after}\:\mathrm{collision}? \\ $$$$\left.\mathrm{2}\right)\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{kinetic}\:\mathrm{energy}\:\mathrm{before} \\ $$$$\mathrm{and}\:\mathrm{after}\:\mathrm{the}\:\mathrm{collision}. \\ $$$$\left.\mathrm{3}\right)\mathrm{How}\:\mathrm{much}\:\mathrm{energy}\:\mathrm{is}\:\mathrm{lost}\:\mathrm{in}\:\mathrm{collision}? \\ $$
Answered by mr W last updated on 19/Dec/22
1)  ((1×90)/(1+1))=45 m/s  2)  KE_1 =((1×90^2 )/2)  KE_2 =(((1+1)×45^2 )/2)  3)  ΔKE=((1×90^2 )/2)−(((1+1)×45^2 )/2)
$$\left.\mathrm{1}\right) \\ $$$$\frac{\mathrm{1}×\mathrm{90}}{\mathrm{1}+\mathrm{1}}=\mathrm{45}\:{m}/{s} \\ $$$$\left.\mathrm{2}\right) \\ $$$${KE}_{\mathrm{1}} =\frac{\mathrm{1}×\mathrm{90}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${KE}_{\mathrm{2}} =\frac{\left(\mathrm{1}+\mathrm{1}\right)×\mathrm{45}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\left.\mathrm{3}\right) \\ $$$$\Delta{KE}=\frac{\mathrm{1}×\mathrm{90}^{\mathrm{2}} }{\mathrm{2}}−\frac{\left(\mathrm{1}+\mathrm{1}\right)×\mathrm{45}^{\mathrm{2}} }{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *