Question Number 179420 by mr W last updated on 29/Oct/22
$$\underline{{a}\:{challening}\:{question}:} \\ $$$${find}\:{the}\:{number}\:{of}\:{numbers}\:{which} \\ $$$${are}\:{divisible}\:{by}\:\mathrm{9}\:{and}\:{consist}\:{of} \\ $$$${distinct}\:{digits}. \\ $$
Commented by Frix last updated on 01/Nov/22
$$\mathrm{I}\:\mathrm{get}\:\mathrm{59}\:“\mathrm{unique}\:\mathrm{numbers}''\:\mathrm{which}\:\mathrm{consist} \\ $$$$\mathrm{of}\:\mathrm{ascending}\:\mathrm{digits}\:\mathrm{without}\:\mathrm{0} \\ $$$$\mathrm{9} \\ $$$$\mathrm{18}\:\mathrm{27}\:\mathrm{36}\:\mathrm{45} \\ $$$$\mathrm{126}\:\mathrm{135}\:\mathrm{189}\:\mathrm{234}\:\mathrm{279}\:\mathrm{369}\:\mathrm{378}\:\mathrm{459}\:\mathrm{468}\:\mathrm{567} \\ $$$$\mathrm{1269}\:\mathrm{1278}\:\mathrm{1359}\:\mathrm{1368}\:\mathrm{1458}\:\mathrm{1467}\:\mathrm{2349}\:\mathrm{2358} \\ $$$$\:\:\:\mathrm{2367}\:\mathrm{2457}\:\mathrm{3456}\:\mathrm{3789}\:\mathrm{4689}\:\mathrm{5679} \\ $$$$\mathrm{12348}\:\mathrm{12357}\:\mathrm{12456}\:\mathrm{12789}\:\mathrm{13689}\:\mathrm{14589} \\ $$$$\:\:\:\mathrm{14679}\:\mathrm{15678}\:\mathrm{23589}\:\mathrm{23679}\:\mathrm{24579}\:\mathrm{24678} \\ $$$$\:\:\:\mathrm{34569}\:\mathrm{34578} \\ $$$$\mathrm{123489}\:\mathrm{123579}\:\mathrm{123678}\:\mathrm{124569}\:\mathrm{124578} \\ $$$$\:\:\:\mathrm{134568}\:\mathrm{156789}\:\mathrm{234567}\:\mathrm{246789}\:\mathrm{345789} \\ $$$$\mathrm{1236789}\:\mathrm{1245789}\:\mathrm{1345689}\:\mathrm{2345679} \\ $$$$\mathrm{12345678} \\ $$$$\mathrm{123456789} \\ $$$$ \\ $$$$\mathrm{1}\:\mathrm{digit}\:\mathrm{1} \\ $$$$\mathrm{2}\:\mathrm{digits}\:\mathrm{4} \\ $$$$\mathrm{3}\:\mathrm{digits}\:\mathrm{10} \\ $$$$\mathrm{4}\:\mathrm{digits}\:\mathrm{14} \\ $$$$\mathrm{5}\:\mathrm{digits}\:\mathrm{14} \\ $$$$\mathrm{6}\:\mathrm{digits}\:\mathrm{10} \\ $$$$\mathrm{7}\:\mathrm{digits}\:\mathrm{4} \\ $$$$\mathrm{8}\:\mathrm{digits}\:\mathrm{1} \\ $$$$\mathrm{9}\:\mathrm{digits}\:\mathrm{1} \\ $$$$ \\ $$$$\mathrm{with}\:\mathrm{all}\:\mathrm{permutations}\:\mathrm{and}\:\mathrm{0}\:\mathrm{I}\:\mathrm{get} \\ $$$$\mathrm{4215386}\:\mathrm{numbers} \\ $$
Commented by mr W last updated on 01/Nov/22
$${thanks}\:{sir}! \\ $$$${how}\:{did}\:{you}\:{get}\:{all}\:{these}\:{numbers}? \\ $$$${the}\:{numbers}\:{of}\:\mathrm{1}\:{to}\:\mathrm{9}\:{digit}\:{numbers} \\ $$$${are}\:{correct},\:{they}\:{correspond}\:{with}\:{my} \\ $$$${table}. \\ $$
Commented by Frix last updated on 01/Nov/22
$$\mathrm{I}\:\mathrm{tried}\:\mathrm{to}\:\mathrm{find}\:\mathrm{a}\:\mathrm{system}\:\mathrm{to}\:\mathrm{get}\:\mathrm{them}: \\ $$$$\mathrm{start}\:\mathrm{with} \\ $$$$\mathrm{9} \\ $$$$\mathrm{we}\:\mathrm{can}\:“\mathrm{split}''\:\mathrm{it}: \\ $$$$\mathrm{18}\:\mathrm{27}\:\mathrm{36}\:\mathrm{45} \\ $$$$\mathrm{then}\:\mathrm{we}\:\mathrm{can}\:\mathrm{add}\:\mathrm{a}\:\mathrm{9}: \\ $$$$\mathrm{189}\:\mathrm{279}\:\mathrm{369}\:\mathrm{459} \\ $$$$\mathrm{now}\:\mathrm{sometimes}\:\mathrm{we}\:\mathrm{can}\:“\mathrm{shift}''\:\mathrm{a}\:\mathrm{1}: \\ $$$$\mathrm{i}.\mathrm{e}.\:\mathrm{369}\:\Rightarrow\:\mathrm{378} \\ $$$$\mathrm{and}\:\mathrm{so}\:\mathrm{on} \\ $$$$\mathrm{if}\:\mathrm{we}\:\mathrm{always}\:\mathrm{stay}\:\mathrm{with}\:\mathrm{ascending}\:\mathrm{digits}\:\mathrm{it}'\mathrm{s} \\ $$$$\mathrm{a}\:\mathrm{fast}\:\mathrm{way} \\ $$
Commented by mr W last updated on 01/Nov/22
$${thanks}\:{alot}\:{for}\:{explaining}! \\ $$
Answered by Rasheed.Sindhi last updated on 29/Oct/22
$$\:\begin{array}{|c|}{\mathbb{A}\:\mathbb{T}\boldsymbol{\mathrm{ry}}…}\\\hline\end{array} \\ $$$$\mathbb{C}-\mathrm{9}:\:\mathrm{Sum}\:\mathrm{of}\:\mathrm{digits}=\mathrm{9} \\ $$$${All}\:{permutations}\:{of} \\ $$$$\:{partions}\:{of}\:\mathrm{9}\:{consist}\:{of}\:{distinct}\:{digits} \\ $$$${which}\:{are}\:{not}\:{starting}\:{with}\:\mathrm{0}\:{from}\:{left}. \\ $$$${a}>{b}>{c}>{d}\Rightarrow\mathrm{3}\leqslant{a}\leqslant\mathrm{9}\:\wedge\mathrm{6}\leqslant\:{d}\leqslant\mathrm{0} \\ $$$$ \\ $$$$\mathrm{0}:\mathrm{1}+\mathrm{8},\mathrm{2}+\mathrm{7},\mathrm{3}+\mathrm{6},\mathrm{4}+\mathrm{5},… \\ $$$$ \\ $$$$\mathrm{1}: \\ $$$$ \\ $$$$\mathbb{C}-\mathrm{18}:\:\mathrm{Sum}\:\mathrm{of}\:\mathrm{digits}=\mathrm{18} \\ $$$$ \\ $$$$ \\ $$$$\mathbb{C}-\mathrm{27}:\:\mathrm{Sum}\:\mathrm{of}\:\mathrm{digits}=\mathrm{27} \\ $$$$ \\ $$$$ \\ $$$$\mathbb{C}-\mathrm{36}:\:\mathrm{Sum}\:\mathrm{of}\:\mathrm{digits}=\mathrm{36} \\ $$$$ \\ $$$$ \\ $$$$\mathbb{C}-\mathrm{45}:\:\mathrm{Sum}\:\mathrm{of}\:\mathrm{digits}=\mathrm{45} \\ $$$$ \\ $$$$… \\ $$
Commented by mr W last updated on 30/Oct/22
$${it}\:{seems}\:{no}\:{one}\:{takes}\:{the}\:{challenge} \\ $$$${except}\:{you}.\:{thanks}\:{for}\:{trying}\:{sir}! \\ $$$${please}\:{continue}\:{sir}! \\ $$$${i}'{ll}\:{alse}\:{give}\:{an}\:{attempt}. \\ $$
Commented by Rasheed.Sindhi last updated on 30/Oct/22
$$\boldsymbol{{Sir}}\:{actually}\:{at}\:{the}\:{moment}\:{I}\:{don}'{t} \\ $$$${know}\:{formulas}\:{of}\:{number}\:{of}\:{partitions}/ \\ $$$$\sim\:{with}\:{some}\:{restrictions}!\:{Even}\:{I} \\ $$$${am}\:{not}\:{sure}\:{of}\:{my}\:{approach}\:{to}\:{be} \\ $$$${correct}! \\ $$$${I}\:{think}\:{my}\:{approach}\:{is}\:{clear}\:{at}\:{least}. \\ $$$$\left({i}\right){Digit}\:{sum}\:{of}\:{such}\:{numbers}\:{is} \\ $$$${between}\:\mathrm{9}\:\&\:\mathrm{45}\:{inclusively}\:{and}\:{must} \\ $$$${be}\:{divisible}\:{by}\:\mathrm{9}\:{i}-{e}\:{it}\:{may}\:{be}\:{equal} \\ $$$${to}\:\mathrm{9},\mathrm{18},\mathrm{27},\mathrm{36}\:{or}\:\mathrm{45}.{So}\:{such}\:{numbers} \\ $$$${must}\:{be}\:{partitions}\:{of}\:{these}\:{numbers} \\ $$$${with}\:{two}\:{more}\:{restrictions}:\:{being} \\ $$$${distinct}\:{and}\:{not}\:{beginning}\:{with}\:\mathrm{0} \\ $$$$\left({from}\:{left}\right). \\ $$$${Could}\:{you}\:{please}\:{say}\:{something} \\ $$$${about}\:{this}\:{approach}.\left(\:{Of}\:{course}\:{there}\right. \\ $$$$\left.{may}\:{be}\:{better}\:{approaches}\right)\:{but}\:{is} \\ $$$${this}\:{a}\:{wrong}\:{approach}? \\ $$$$ \\ $$
Commented by mr W last updated on 30/Oct/22
$${your}\:{idea}\:{is}\:{absolutely}\:{correct}.\:{i}\:{think} \\ $$$${there}\:{are}\:{no}\:{other}\:{shortcut}\:{methods}\: \\ $$$${than}\:{this}.\:{so}\:{the}\:{task}\:{is}\:{to}\:{find}\:{the}\: \\ $$$${number}\:{of}\:{ways}\:{to}\:{select}\:{r}\:{digits}\:{from} \\ $$$$\left[\mathrm{1},\mathrm{9}\right]\:{such}\:{that}\:{their}\:{sum}\:{is}\:{a}\:{multiple}\: \\ $$$${of}\:\mathrm{9},\:{i}.{e}.\:\mathrm{9},\:\mathrm{18},\:\mathrm{27},\:\mathrm{36},\:\mathrm{45}.\: \\ $$$${here}\:{r}=\mathrm{2},\:\mathrm{3},\:…,\mathrm{9}. \\ $$
Commented by Rasheed.Sindhi last updated on 30/Oct/22
$$\mathbb{G}\boldsymbol{\mathrm{rateful}}\:\boldsymbol{\mathrm{sir}}! \\ $$
Commented by Rasheed.Sindhi last updated on 30/Oct/22
$${Sorry}\:{sir},{I}'{ve}\:{only}\:{rough}\:{idea}. \\ $$$${Complete}\:{solution}\:{is}\:{beyond}\:{my} \\ $$$${very}\:{limited}\:{capacity}! \\ $$
Commented by mr W last updated on 31/Oct/22
$${thanks}\:{for}\:{till}\:{now}!\:{please}\:{check}\:{my} \\ $$$${answer}\:{sir}! \\ $$
Answered by mr W last updated on 31/Oct/22
$$\boldsymbol{{an}}\:\boldsymbol{{attempt}} \\ $$$${since}\:{such}\:{a}\:{number}\:{should}\:{consist} \\ $$$${of}\:{distinct}\:{digits},\:{it}\:{must}\:{have}\:{at} \\ $$$${least}\:{two}\:{digits}\:{and}\:{at}\:{most}\:\mathrm{10}\:{digits}. \\ $$$${let}'{s}\:{consider}\:{at}\:{first}\:{only}\:\:{numbers} \\ $$$${without}\:{the}\:{digit}\:“\mathrm{0}'',\:{since}\:{if}\:{we}\:{have} \\ $$$${a}\:{r}−{digit}−{number}\:{which}\:{is}\:{divisible} \\ $$$${by}\:\mathrm{9},\:{but}\:{without}\:“\mathrm{0}'',\:\:{then}\:{we}\:{have}\: \\ $$$${automatically}\:{r}\: \\ $$$$\left({r}+\mathrm{1}\right)−{digit}−{numbers}\:{which}\:{are} \\ $$$${also}\:{divisible}\:{by}\:\mathrm{9}.\:{as}\:{example}: \\ $$$${say}\:{d}_{\mathrm{1}} {d}_{\mathrm{2}} …{d}_{{r}} \:{is}\:{divisible}\:{by}\:\mathrm{9},\:{with}\:{d}_{{i}} \neq\mathrm{0}, \\ $$$${then}\:{d}_{\mathrm{1}} \mathrm{0}{d}_{\mathrm{2}} …{d}_{{r}} ,{d}_{\mathrm{1}} {d}_{\mathrm{2}} \mathrm{0}…{d}_{{r}} ,…,{d}_{\mathrm{1}} {d}_{\mathrm{2}} …{d}_{{r}} \mathrm{0}\: \\ $$$${are}\:{also}\:{divisible}\:{by}\:\mathrm{9}. \\ $$$${we}\:{know}\:{a}\:{number}\:{is}\:{divisible}\:{by}\:\mathrm{9}, \\ $$$${if}\:{the}\:{sum}\:{of}\:{its}\:{digits}\:{is}\:{divisible}\:{by} \\ $$$$\mathrm{9}.\:{the}\:{sum}\:{of}\:\mathrm{9}\:{different}\:{digits}\:{can} \\ $$$${at}\:{most}\:{be}\: \\ $$$$\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+\mathrm{5}+\mathrm{6}+\mathrm{7}+\mathrm{8}+\mathrm{9}=\mathrm{45}. \\ $$$${therefore}\:{the}\:{sum}\:{of}\:{the}\:{digits}\:{from} \\ $$$${a}\:{number}\:{with}\:{distinct}\:{digits}\:{and} \\ $$$${divisible}\:{by}\:\mathrm{9}\:{must}\:{be} \\ $$$$\mathrm{9}\:{or}\:\mathrm{18}\:{or}\:\mathrm{27}\:{or}\:\mathrm{36}\:{or}\:\mathrm{45}. \\ $$$${now}\:{we}\:{should}\:{find}\:{the}\:{number}\:{of} \\ $$$${ways}\:{to}\:{select}\:{r}\:{digits}\:{from}\:\left[\mathrm{1},\mathrm{9}\right]\: \\ $$$${such}\:{that}\:{their}\:{sum}\:{is}\:\mathrm{9}\:{or}\:\mathrm{18}\:{or}\:\mathrm{27}\:{or} \\ $$$$\mathrm{36}\:{or}\:\mathrm{45}.\:{here}\:{r}=\mathrm{1},\mathrm{2},…,\mathrm{9}. \\ $$$${say}\:{the}\:{r}\:{distinct}\:{digits}\:{are} \\ $$$${d}_{\mathrm{1}} ,{d}_{\mathrm{2}} ,…,{d}_{{r}} \:{with}\: \\ $$$${d}_{\mathrm{1}} <{d}_{\mathrm{2}} <…<{d}_{{r}} \:{and}\:\mathrm{1}\leqslant{d}_{{i}} \leqslant\mathrm{9} \\ $$$${with}\:{them}\:{we}\:{can}\:{form}\:{r}!\: \\ $$$${r}−{digit}−{numbers}. \\ $$$${d}_{\mathrm{1}} +{d}_{\mathrm{2}} +…+{d}_{{r}} =\mathrm{9}\:{or}\:\mathrm{18}\:{or}\:\mathrm{27}\:{or}\:\mathrm{36}\:{or}\:\mathrm{45}. \\ $$$${the}\:{number}\:{of}\:{integer}\:{solutions}\:{of} \\ $$$${this}\:{equation}\:{represents}\:{the}\:{number} \\ $$$${of}\:{ways}\:{to}\:{select}\:{d}_{\mathrm{1}} ,{d}_{\mathrm{2}} ,…,{d}_{{r}} \:{from}\:\left[\mathrm{1},\mathrm{9}\right]. \\ $$
Commented by mr W last updated on 31/Oct/22
$${number}\:{of}\:{ways}\:{to}\:{select}\:{r}\:{digits}\:{from} \\ $$$$\left[\mathrm{1},\mathrm{9}\right]\:{such}\:{that}\:{their}\:{sum}\:{is}\:{equal}\:{to}… \\ $$
Commented by mr W last updated on 01/Nov/22
Commented by mr W last updated on 01/Nov/22
$$\mathrm{2}−{digit}\:{numbers}: \\ $$$$\:\:{without}\:“\mathrm{0}'':\:\:\:\mathrm{4}×\mathrm{2}!=\mathrm{8} \\ $$$$\:\:{with}\:“\mathrm{0}'':\:\:\:\:\:\:\:\:\:\:\mathrm{1}×\mathrm{1}=\mathrm{1} \\ $$$$\mathrm{3}−{digit}\:{numbers}: \\ $$$$\:\:{without}\:“\mathrm{0}'':\:\:\:\left(\mathrm{3}+\mathrm{7}\right)×\mathrm{3}!=\mathrm{60} \\ $$$$\:\:{with}\:“\mathrm{0}'':\:\:\:\:\:\:\:\:\:\:\mathrm{8}×\mathrm{2}=\mathrm{16} \\ $$$$\mathrm{4}−{digit}\:{numbers}: \\ $$$$\:\:{without}\:“\mathrm{0}'':\:\:\:\left(\mathrm{11}+\mathrm{3}\right)×\mathrm{4}!=\mathrm{336} \\ $$$$\:\:{with}\:“\mathrm{0}'':\:\:\:\:\:\:\:\:\:\:\mathrm{60}×\mathrm{3}=\mathrm{180} \\ $$$$\mathrm{5}−{digit}\:{numbers}: \\ $$$$\:\:{without}\:“\mathrm{0}'':\:\:\:\left(\mathrm{3}+\mathrm{11}\right)×\mathrm{5}!=\mathrm{1}\:\mathrm{680} \\ $$$$\:\:{with}\:“\mathrm{0}'':\:\:\:\:\:\:\:\:\:\:\mathrm{336}×\mathrm{4}=\mathrm{1}\:\mathrm{344} \\ $$$$\mathrm{6}−{digit}\:{numbers}: \\ $$$$\:\:{without}\:“\mathrm{0}'':\:\:\:\left(\mathrm{7}+\mathrm{3}\right)×\mathrm{6}!=\mathrm{7}\:\mathrm{200} \\ $$$$\:\:{with}\:“\mathrm{0}'':\:\:\:\:\:\:\:\:\:\:\mathrm{1680}×\mathrm{5}=\mathrm{8}\:\mathrm{400} \\ $$$$\mathrm{7}−{digit}\:{numbers}: \\ $$$$\:\:{without}\:“\mathrm{0}'':\:\:\:\mathrm{4}×\mathrm{7}!=\mathrm{20}\:\mathrm{160} \\ $$$$\:\:{with}\:“\mathrm{0}'':\:\:\:\:\:\:\:\:\:\:\mathrm{7200}×\mathrm{6}=\mathrm{43}\:\mathrm{200} \\ $$$$\mathrm{8}−{digit}\:{numbers}: \\ $$$$\:\:{without}\:“\mathrm{0}'':\:\:\:\mathrm{1}×\mathrm{8}!=\mathrm{40}\:\mathrm{320} \\ $$$$\:\:{with}\:“\mathrm{0}'':\:\:\:\:\:\:\:\:\:\:\mathrm{20160}×\mathrm{7}=\mathrm{141}\:\mathrm{120} \\ $$$$\mathrm{9}−{digit}\:{numbers}: \\ $$$$\:\:{without}\:“\mathrm{0}'':\:\:\:\mathrm{1}×\mathrm{9}!=\mathrm{362}\:\mathrm{880} \\ $$$$\:\:{with}\:“\mathrm{0}'':\:\:\:\:\:\:\:\:\:\:\mathrm{40320}×\mathrm{8}=\mathrm{322}\:\mathrm{560} \\ $$$$\mathrm{10}−{digit}\:{numbers}: \\ $$$$\:\:{with}\:“\mathrm{0}'':\:\:\:\:\:\:\:\:\:\:\mathrm{362880}×\mathrm{9}=\mathrm{3}\:\mathrm{265}\:\mathrm{920} \\ $$$$ \\ $$$${totally}:\:\:\mathrm{4}\:\mathrm{215}\:\mathrm{385}\:{numbers} \\ $$
Commented by mr W last updated on 31/Oct/22
$${to}\:{check}\:{the}\:{table}\:{above}\:{we}\:{can}\: \\ $$$${calculate}\:{the}\:{total}\:{number}\:\left(\Sigma\right)\:{of} \\ $$$${ways}\:{to}\:{select}\:\mathrm{1},\mathrm{2},…,\mathrm{9}\:{to}\:{get}\:{the}\:{sum}\:{k}. \\ $$$${it}\:{is}\:{the}\:{coefficient}\:{of}\:{x}^{{k}} \:{in}\:{the} \\ $$$${expansion}\:{of}\: \\ $$$$\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{3}} \right)…\left(\mathrm{1}+{x}^{\mathrm{9}} \right). \\ $$$${here}\:{we}\:{only}\:{need}\:{to}\:{look}\:{at}\:{the}\:{values} \\ $$$${for}\:{k}=\mathrm{9},\:\mathrm{18},\:\mathrm{27},\:\mathrm{36},\:\mathrm{45}. \\ $$
Commented by mr W last updated on 31/Oct/22