Menu Close

a-circle-is-tangent-to-x-axis-y-axis-and-the-line-3x-4y-6-0-what-its-the-equation-




Question Number 116239 by bemath last updated on 02/Oct/20
a circle is tangent to x−axis , y−axis  and the line 3x−4y+6=0.  what its the equation?
acircleistangenttoxaxis,yaxisandtheline3x4y+6=0.whatitstheequation?
Answered by bemath last updated on 02/Oct/20
say P(a,b) be a centre point the circle  tangent to x−axis →radius = ∣b∣  tangent to y−axis→radius = ∣a∣  tangent to the line 3x−4y+6=0  radius = ((∣3a−4b+6∣)/5)  Now we have ∣a∣ = ∣b∣ → { ((a=b)),((a=−b)) :}  for case a=b ⇒∣a∣ = ((∣6−a∣)/5)  ⇒ 25a^2  = a^2 −12a+36   ⇒24a^2 +12a−36=0  ⇒2a^2 +a−3=0 ,(2a+3)(a−1)=0  → { ((a=−(3/2)=b⇒→(x+(3/2))^2 +(y+(3/2))^2 =(9/4))),((a=1=b⇒(x−1)^2 +(y−1)^2 =1)) :}  for case a=−b  ⇒∣a∣ = ((∣7a+6∣)/5)  ⇒25a^2 = 49a^2 +84a+36  ⇒24a^2 +84a+36=0  ⇒2a^2 +7a+3=0,(2a+1)(a+3)=0  → { ((a=−(1/2),b=(1/2)⇒(x+(1/2))^2 +(y−(1/2))^2 =(1/4))),((a=−3,b=3⇒(x+3)^2 +(y−3)^2 =9)) :}
sayP(a,b)beacentrepointthecircletangenttoxaxisradius=btangenttoyaxisradius=atangenttotheline3x4y+6=0radius=3a4b+65Nowwehavea=b{a=ba=bforcasea=b⇒∣a=6a525a2=a212a+3624a2+12a36=02a2+a3=0,(2a+3)(a1)=0{a=32=b⇒→(x+32)2+(y+32)2=94a=1=b(x1)2+(y1)2=1forcasea=b⇒∣a=7a+6525a2=49a2+84a+3624a2+84a+36=02a2+7a+3=0,(2a+1)(a+3)=0{a=12,b=12(x+12)2+(y12)2=14a=3,b=3(x+3)2+(y3)2=9
Commented by bobhans last updated on 02/Oct/20
Answered by 1549442205PVT last updated on 02/Oct/20
Suppose the equation of the circle is  (x−a)^2 +(y−b)^2 =R^2   From the hypothesis we infer the system  of equations :   { (((x−a)^2 +(y−b)^2 =R^2 )),((x=0)) :}(1)   { (((x−a)^2 +(y−b)^2 =R^2 )),((y=0)) :}(2)   { (((x−a)^2 +(y−b)^2 =R^2 )),((3x−4y+6=0)) :}(3)  have unique root  (1)⇔a^2 +y^2 −2yb+b^2 −R^2 =0  with Δ′=b^2 −a^2 −b^2 +R^2 =R^2 −a^2   (2)⇔x^2 −2ax+a^2 +b^2 −R^2 =0  with Δ′=a^2 −a^2 −b^2 +R^2 =R^2 −b^2   (3)⇔x^2 −2ax+a^2 +(((3x+6)/4)−b)^2 −R^2 =0  ⇔x^2 −2ax+a^2 +((9x^2 +36x+36)/(16))−(((3x+6)b)/2)+b^2 −R^2 =0  ⇔25x^2 −(32a+24b−36)x+16(a^2 +b^2 )−48b+36−16R^2 =0  with Δ′=(16a+12b−18)^2 −25[16(a^2 +b^2 )−48b+36−16R^2 ]  =−144a^2 −256b^2 −576a+384ab  +768b−576+400R^2 (4)  We need must have Δ′=0 so   { ((−a^2 +R^2 =0)),((R^2 −b^2 =0)) :}⇔ { ((a=±R)),((b=±R)) :}(5)  i)For a=R,b=R  replace into (4)we get  −144R^2 −256R^2 −576R+384R^2   +768R−586+400R^2 =0  ⇔384R^2 +192R−576=0  ⇔2R^2 +R−3=0⇒R=1=a=b  (x−1)^2 +(y−1)^2 =1  ii)For a=R,b=−R we get  −144R^2 −256R^2 −576R−384R^2 −768R  −576+400R^2 ⇔384R^2 +1344R+576=0  2R^2 +7R+3=0⇒has no roots  iii)For a=−R,b=R we get:  −144R^2 −256R^2 +576R−384R^2   +768R−576+400R^2 =0  ⇔384R^2 −1344R+576=0  ⇔2R^2 −7R+3=0  R=3 ∨(1/2) we have two the circles  (x+3)^2 +(y−3)^2 =9 (R=3=b=−a)  (x+(1/2))^2 +(y−(1/2))^2 =(1/4) (R=(1/2)=b=−a)  iv)For a=−R,b=−R we get  −144R^2 −256R^2 +576R+384R^2   −768R−576+400R^2 =0  ⇔384R^2 −192R−576=0  ⇔2R^2 −R−3=0⇒R=(3/2) =−a=−b  (x+(3/2))^2 +(y+(3/2))^2 =(9/4)  Thus,we get four circle with the   equations as above
Supposetheequationofthecircleis(xa)2+(yb)2=R2Fromthehypothesisweinferthesystemofequations:{(xa)2+(yb)2=R2x=0(1){(xa)2+(yb)2=R2y=0(2){(xa)2+(yb)2=R23x4y+6=0(3)haveuniqueroot(1)a2+y22yb+b2R2=0withΔ=b2a2b2+R2=R2a2(2)x22ax+a2+b2R2=0withΔ=a2a2b2+R2=R2b2(3)x22ax+a2+(3x+64b)2R2=0x22ax+a2+9x2+36x+3616(3x+6)b2+b2R2=025x2(32a+24b36)x+16(a2+b2)48b+3616R2=0withΔ=(16a+12b18)225[16(a2+b2)48b+3616R2]=144a2256b2576a+384ab+768b576+400R2(4)WeneedmusthaveΔ=0so{a2+R2=0R2b2=0{a=±Rb=±R(5)i)Fora=R,b=Rreplaceinto(4)weget144R2256R2576R+384R2+768R586+400R2=0384R2+192R576=02R2+R3=0R=1=a=b(x1)2+(y1)2=1ii)Fora=R,b=Rweget144R2256R2576R384R2768R576+400R2384R2+1344R+576=02R2+7R+3=0hasnorootsiii)Fora=R,b=Rweget:144R2256R2+576R384R2+768R576+400R2=0384R21344R+576=02R27R+3=0R=312wehavetwothecircles(x+3)2+(y3)2=9(R=3=b=a)(x+12)2+(y12)2=14(R=12=b=a)iv)Fora=R,b=Rweget144R2256R2+576R+384R2768R576+400R2=0384R2192R576=02R2R3=0R=32=a=b(x+32)2+(y+32)2=94Thus,wegetfourcirclewiththeequationsasabove
Commented by bemath last updated on 02/Oct/20
thank you
thankyou
Answered by TANMAY PANACEA last updated on 02/Oct/20
eqn of circle (x−α)^2 +(y−α)^2 =α^2   ∣((3α−4α+6)/( (√(3^2 +(−4)^2 ))))∣=α  36−12α+α^2 =25α^2   12(2α^2 +α−3)=0  2α^2 +3α−2α−3=  α(2α+3)−1(2α+3)=0  (2α+3)(α−1)=0  eqn circle  (x−1)^2 +(y−1)^2 =1  (x+(3/2))^2 +(y+(3/2))^2 =((3/2))^2   ok...i am completing  x^2 +y^2 −2x−2y+2=1  x^2 +y^2 −2x−2y+1=0→first eqn  x^2 +y^2 +3x+3y+(9/4)+(9/4)=(9/4)  x^2 +y^2 +3x+3y+2.25=0
eqnofcircle(xα)2+(yα)2=α23α4α+632+(4)2∣=α3612α+α2=25α212(2α2+α3)=02α2+3α2α3=α(2α+3)1(2α+3)=0(2α+3)(α1)=0eqncircle(x1)2+(y1)2=1(x+32)2+(y+32)2=(32)2okiamcompletingx2+y22x2y+2=1x2+y22x2y+1=0firsteqnx2+y2+3x+3y+94+94=94x2+y2+3x+3y+2.25=0
Commented by bemath last updated on 02/Oct/20
not complete sir?
notcompletesir?
Commented by bemath last updated on 02/Oct/20
i′m got 4 equation of a circle. it right?
imgot4equationofacircle.itright?
Answered by 1549442205PVT last updated on 02/Oct/20

Leave a Reply

Your email address will not be published. Required fields are marked *