Question Number 116239 by bemath last updated on 02/Oct/20

Answered by bemath last updated on 02/Oct/20

Commented by bobhans last updated on 02/Oct/20

Answered by 1549442205PVT last updated on 02/Oct/20
![Suppose the equation of the circle is (x−a)^2 +(y−b)^2 =R^2 From the hypothesis we infer the system of equations : { (((x−a)^2 +(y−b)^2 =R^2 )),((x=0)) :}(1) { (((x−a)^2 +(y−b)^2 =R^2 )),((y=0)) :}(2) { (((x−a)^2 +(y−b)^2 =R^2 )),((3x−4y+6=0)) :}(3) have unique root (1)⇔a^2 +y^2 −2yb+b^2 −R^2 =0 with Δ′=b^2 −a^2 −b^2 +R^2 =R^2 −a^2 (2)⇔x^2 −2ax+a^2 +b^2 −R^2 =0 with Δ′=a^2 −a^2 −b^2 +R^2 =R^2 −b^2 (3)⇔x^2 −2ax+a^2 +(((3x+6)/4)−b)^2 −R^2 =0 ⇔x^2 −2ax+a^2 +((9x^2 +36x+36)/(16))−(((3x+6)b)/2)+b^2 −R^2 =0 ⇔25x^2 −(32a+24b−36)x+16(a^2 +b^2 )−48b+36−16R^2 =0 with Δ′=(16a+12b−18)^2 −25[16(a^2 +b^2 )−48b+36−16R^2 ] =−144a^2 −256b^2 −576a+384ab +768b−576+400R^2 (4) We need must have Δ′=0 so { ((−a^2 +R^2 =0)),((R^2 −b^2 =0)) :}⇔ { ((a=±R)),((b=±R)) :}(5) i)For a=R,b=R replace into (4)we get −144R^2 −256R^2 −576R+384R^2 +768R−586+400R^2 =0 ⇔384R^2 +192R−576=0 ⇔2R^2 +R−3=0⇒R=1=a=b (x−1)^2 +(y−1)^2 =1 ii)For a=R,b=−R we get −144R^2 −256R^2 −576R−384R^2 −768R −576+400R^2 ⇔384R^2 +1344R+576=0 2R^2 +7R+3=0⇒has no roots iii)For a=−R,b=R we get: −144R^2 −256R^2 +576R−384R^2 +768R−576+400R^2 =0 ⇔384R^2 −1344R+576=0 ⇔2R^2 −7R+3=0 R=3 ∨(1/2) we have two the circles (x+3)^2 +(y−3)^2 =9 (R=3=b=−a) (x+(1/2))^2 +(y−(1/2))^2 =(1/4) (R=(1/2)=b=−a) iv)For a=−R,b=−R we get −144R^2 −256R^2 +576R+384R^2 −768R−576+400R^2 =0 ⇔384R^2 −192R−576=0 ⇔2R^2 −R−3=0⇒R=(3/2) =−a=−b (x+(3/2))^2 +(y+(3/2))^2 =(9/4) Thus,we get four circle with the equations as above](https://www.tinkutara.com/question/Q116241.png)
Commented by bemath last updated on 02/Oct/20

Answered by TANMAY PANACEA last updated on 02/Oct/20

Commented by bemath last updated on 02/Oct/20

Commented by bemath last updated on 02/Oct/20

Answered by 1549442205PVT last updated on 02/Oct/20
