Menu Close

A-circle-x-2-y-2-2x-4y-5-0-with-centr-0-is-cut-by-a-line-y-2x-5-at-points-P-and-Q-Show-that-QO-is-perpendicular-to-PO-




Question Number 59287 by pete last updated on 07/May/19
A circle x^2 +y^2 −2x−4y−5=0 with centr  0 is cut by a line y=2x+5 at points P and Q.  Show that QO is perpendicular to PO.
$$\mathrm{A}\:\mathrm{circle}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{2x}−\mathrm{4y}−\mathrm{5}=\mathrm{0}\:\mathrm{with}\:\mathrm{centr} \\ $$$$\mathrm{0}\:\mathrm{is}\:\mathrm{cut}\:\mathrm{by}\:\mathrm{a}\:\mathrm{line}\:\mathrm{y}=\mathrm{2x}+\mathrm{5}\:\mathrm{at}\:\mathrm{points}\:\mathrm{P}\:\mathrm{and}\:\mathrm{Q}. \\ $$$$\mathrm{Show}\:\mathrm{that}\:\mathrm{QO}\:\mathrm{is}\:\mathrm{perpendicular}\:\mathrm{to}\:\mathrm{PO}. \\ $$
Answered by tanmay last updated on 07/May/19
solve y=2x+5 and x^2 +y^2 −2x−4y−5=0  x^2 +4x^2 +20x+25−2x−4(2x+5)−5=0  5x^2 +10x=0  x(x+2)=0  when x=0   y=5  when x=−2    y=1  P(0,5)   Q(−2,1)  x^2 −2x+1+y^2 −4y+4−10=0  (x−1)^2 +(y−2)^2 =10  centre O(1,2)  m_1 =slope OP=((5−2)/(0−1))=−3  m_2 =slope OQ=((2−1)/(1−(−2)))=(1/3)  m_1 ×m_2 =−3×(1/3)=−1  so OP⊥OQ
$${solve}\:{y}=\mathrm{2}{x}+\mathrm{5}\:{and}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{4}{y}−\mathrm{5}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{2}} +\mathrm{20}{x}+\mathrm{25}−\mathrm{2}{x}−\mathrm{4}\left(\mathrm{2}{x}+\mathrm{5}\right)−\mathrm{5}=\mathrm{0} \\ $$$$\mathrm{5}{x}^{\mathrm{2}} +\mathrm{10}{x}=\mathrm{0} \\ $$$${x}\left({x}+\mathrm{2}\right)=\mathrm{0} \\ $$$${when}\:{x}=\mathrm{0}\:\:\:{y}=\mathrm{5} \\ $$$${when}\:{x}=−\mathrm{2}\:\:\:\:{y}=\mathrm{1} \\ $$$${P}\left(\mathrm{0},\mathrm{5}\right)\:\:\:{Q}\left(−\mathrm{2},\mathrm{1}\right) \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}+{y}^{\mathrm{2}} −\mathrm{4}{y}+\mathrm{4}−\mathrm{10}=\mathrm{0} \\ $$$$\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\left({y}−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{10} \\ $$$${centre}\:{O}\left(\mathrm{1},\mathrm{2}\right) \\ $$$${m}_{\mathrm{1}} ={slope}\:{OP}=\frac{\mathrm{5}−\mathrm{2}}{\mathrm{0}−\mathrm{1}}=−\mathrm{3} \\ $$$${m}_{\mathrm{2}} ={slope}\:{OQ}=\frac{\mathrm{2}−\mathrm{1}}{\mathrm{1}−\left(−\mathrm{2}\right)}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${m}_{\mathrm{1}} ×{m}_{\mathrm{2}} =−\mathrm{3}×\frac{\mathrm{1}}{\mathrm{3}}=−\mathrm{1} \\ $$$${so}\:{OP}\bot{OQ} \\ $$
Commented by pete last updated on 07/May/19
thanks very much sir
$$\mathrm{thanks}\:\mathrm{very}\:\mathrm{much}\:\mathrm{sir} \\ $$
Commented by tanmay last updated on 07/May/19
most welcome...
$${most}\:{welcome}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *