Menu Close

A-closed-surface-is-defined-in-spherical-coordinates-by-3-lt-r-lt-5-0-1pi-lt-lt-0-3pi-1-2pi-lt-lt-1-6pi-Find-the-total-surface-area-




Question Number 82591 by Learner-123 last updated on 22/Feb/20
A closed surface is defined in spherical  coordinates by 3<r<5 , 0.1π<θ<0.3π,  1.2π<φ<1.6π. Find the total surface  area.
$${A}\:{closed}\:{surface}\:{is}\:{defined}\:{in}\:{spherical} \\ $$$${coordinates}\:{by}\:\mathrm{3}<{r}<\mathrm{5}\:,\:\mathrm{0}.\mathrm{1}\pi<\theta<\mathrm{0}.\mathrm{3}\pi, \\ $$$$\mathrm{1}.\mathrm{2}\pi<\phi<\mathrm{1}.\mathrm{6}\pi.\:\boldsymbol{{F}}{ind}\:{the}\:{total}\:{surface} \\ $$$${area}. \\ $$
Commented by Learner-123 last updated on 22/Feb/20
Ans:36.79 square units.
$${Ans}:\mathrm{36}.\mathrm{79}\:{square}\:{units}. \\ $$
Commented by Learner-123 last updated on 23/Feb/20
Commented by Learner-123 last updated on 23/Feb/20
Sir, this is the explaination given.  Can you tell how these 4 (actually 5)terms  come..
$${Sir},\:{this}\:{is}\:{the}\:{explaination}\:{given}. \\ $$$${Can}\:{you}\:{tell}\:{how}\:{these}\:\mathrm{4}\:\left({actually}\:\mathrm{5}\right){terms} \\ $$$${come}.. \\ $$
Commented by mr W last updated on 23/Feb/20
Commented by mr W last updated on 23/Feb/20
in our case  φ=0.1π..0.3π  θ=1.2π..1.6π  r=3..5  we have totally 6 faces:  face 1: r=3, φ=0.1π...0.3π, θ=1.2π..1.6π  A_1 =∫_(1.2π) ^(1.6π) ∫_(0.1π) ^(0.3π) r sin θ dφrdθ=3^2 ∫_(1.2π) ^(1.6π) ∫_(0.1π) ^(0.3π) sin θ dφdθ  face 2: r=5, φ=0.1π...0.3π, θ=1.2π..1.6π  A_2 =similarly=5^2 ∫_(1.2π) ^(1.6π) ∫_(0.1π) ^(0.3π) sin θ dφdθ  face 3: φ=0.1π, θ=1.2π..1.6π, r=3..5  A_3 =(1/2)(5^2 −3^2 )(1.6π−1.2π)  face 4: φ=0.3π, θ=1.2π..1.6π, r=3..5  A_4 =(1/2)(5^2 −3^2 )(1.6π−1.2π)  face 5: φ=0.1π..0.3π, θ=1.2π, r=3..5  A_5 =∫_(0.1π) ^(0.3π) ∫_3 ^5 sin 1.2π dφrdr  face 6: φ=0.1π..0.3π, θ=1.6π, r=3..5  A_6 =∫_(0.1π) ^(0.3π) ∫_3 ^5 sin 1.6π dφrdr  A=ΣA  =(3^2 +5^2 )∫_(1.2π) ^(1.6π) ∫_(0.1π) ^(0.3π) sin θ dφdθ  +2×(1/2)(5^2 −3^2 )(1.6π−1.2π)  +(sin 1.2π+sin 1.6π)(0.3π−0.1π)∫_3 ^5 rdφdr
$${in}\:{our}\:{case} \\ $$$$\phi=\mathrm{0}.\mathrm{1}\pi..\mathrm{0}.\mathrm{3}\pi \\ $$$$\theta=\mathrm{1}.\mathrm{2}\pi..\mathrm{1}.\mathrm{6}\pi \\ $$$${r}=\mathrm{3}..\mathrm{5} \\ $$$${we}\:{have}\:{totally}\:\mathrm{6}\:{faces}: \\ $$$${face}\:\mathrm{1}:\:{r}=\mathrm{3},\:\phi=\mathrm{0}.\mathrm{1}\pi…\mathrm{0}.\mathrm{3}\pi,\:\theta=\mathrm{1}.\mathrm{2}\pi..\mathrm{1}.\mathrm{6}\pi \\ $$$${A}_{\mathrm{1}} =\int_{\mathrm{1}.\mathrm{2}\pi} ^{\mathrm{1}.\mathrm{6}\pi} \int_{\mathrm{0}.\mathrm{1}\pi} ^{\mathrm{0}.\mathrm{3}\pi} {r}\:\mathrm{sin}\:\theta\:{d}\phi{rd}\theta=\mathrm{3}^{\mathrm{2}} \int_{\mathrm{1}.\mathrm{2}\pi} ^{\mathrm{1}.\mathrm{6}\pi} \int_{\mathrm{0}.\mathrm{1}\pi} ^{\mathrm{0}.\mathrm{3}\pi} \mathrm{sin}\:\theta\:{d}\phi{d}\theta \\ $$$${face}\:\mathrm{2}:\:{r}=\mathrm{5},\:\phi=\mathrm{0}.\mathrm{1}\pi…\mathrm{0}.\mathrm{3}\pi,\:\theta=\mathrm{1}.\mathrm{2}\pi..\mathrm{1}.\mathrm{6}\pi \\ $$$${A}_{\mathrm{2}} ={similarly}=\mathrm{5}^{\mathrm{2}} \int_{\mathrm{1}.\mathrm{2}\pi} ^{\mathrm{1}.\mathrm{6}\pi} \int_{\mathrm{0}.\mathrm{1}\pi} ^{\mathrm{0}.\mathrm{3}\pi} \mathrm{sin}\:\theta\:{d}\phi{d}\theta \\ $$$${face}\:\mathrm{3}:\:\phi=\mathrm{0}.\mathrm{1}\pi,\:\theta=\mathrm{1}.\mathrm{2}\pi..\mathrm{1}.\mathrm{6}\pi,\:{r}=\mathrm{3}..\mathrm{5} \\ $$$${A}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{5}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} \right)\left(\mathrm{1}.\mathrm{6}\pi−\mathrm{1}.\mathrm{2}\pi\right) \\ $$$${face}\:\mathrm{4}:\:\phi=\mathrm{0}.\mathrm{3}\pi,\:\theta=\mathrm{1}.\mathrm{2}\pi..\mathrm{1}.\mathrm{6}\pi,\:{r}=\mathrm{3}..\mathrm{5} \\ $$$${A}_{\mathrm{4}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{5}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} \right)\left(\mathrm{1}.\mathrm{6}\pi−\mathrm{1}.\mathrm{2}\pi\right) \\ $$$${face}\:\mathrm{5}:\:\phi=\mathrm{0}.\mathrm{1}\pi..\mathrm{0}.\mathrm{3}\pi,\:\theta=\mathrm{1}.\mathrm{2}\pi,\:{r}=\mathrm{3}..\mathrm{5} \\ $$$${A}_{\mathrm{5}} =\int_{\mathrm{0}.\mathrm{1}\pi} ^{\mathrm{0}.\mathrm{3}\pi} \int_{\mathrm{3}} ^{\mathrm{5}} \mathrm{sin}\:\mathrm{1}.\mathrm{2}\pi\:{d}\phi{rdr} \\ $$$${face}\:\mathrm{6}:\:\phi=\mathrm{0}.\mathrm{1}\pi..\mathrm{0}.\mathrm{3}\pi,\:\theta=\mathrm{1}.\mathrm{6}\pi,\:{r}=\mathrm{3}..\mathrm{5} \\ $$$${A}_{\mathrm{6}} =\int_{\mathrm{0}.\mathrm{1}\pi} ^{\mathrm{0}.\mathrm{3}\pi} \int_{\mathrm{3}} ^{\mathrm{5}} \mathrm{sin}\:\mathrm{1}.\mathrm{6}\pi\:{d}\phi{rdr} \\ $$$${A}=\Sigma{A} \\ $$$$=\left(\mathrm{3}^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} \right)\int_{\mathrm{1}.\mathrm{2}\pi} ^{\mathrm{1}.\mathrm{6}\pi} \int_{\mathrm{0}.\mathrm{1}\pi} ^{\mathrm{0}.\mathrm{3}\pi} \mathrm{sin}\:\theta\:{d}\phi{d}\theta \\ $$$$+\mathrm{2}×\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{5}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} \right)\left(\mathrm{1}.\mathrm{6}\pi−\mathrm{1}.\mathrm{2}\pi\right) \\ $$$$+\left(\mathrm{sin}\:\mathrm{1}.\mathrm{2}\pi+\mathrm{sin}\:\mathrm{1}.\mathrm{6}\pi\right)\left(\mathrm{0}.\mathrm{3}\pi−\mathrm{0}.\mathrm{1}\pi\right)\int_{\mathrm{3}} ^{\mathrm{5}} {rd}\phi{dr} \\ $$
Commented by Learner-123 last updated on 24/Feb/20
Thank You Sir!  Can you please solve my other 3 doubts?
$${Thank}\:{You}\:{Sir}! \\ $$$${Can}\:{you}\:{please}\:{solve}\:{my}\:{other}\:\mathrm{3}\:{doubts}? \\ $$
Commented by mr W last updated on 24/Feb/20
i don′t know what are your doubts. you  should not assume that i know all posts.
$${i}\:{don}'{t}\:{know}\:{what}\:{are}\:{your}\:{doubts}.\:{you} \\ $$$${should}\:{not}\:{assume}\:{that}\:{i}\:{know}\:{all}\:{posts}. \\ $$
Commented by Learner-123 last updated on 24/Feb/20
Question no: 82627 , 82631,82647
$${Question}\:{no}:\:\mathrm{82627}\:,\:\mathrm{82631},\mathrm{82647} \\ $$
Commented by Learner-123 last updated on 24/Feb/20
I think there is some technical problem  in this app, whenever i press “sort by  recent activity” it gets me to same  integral question everytime...(75986)
$${I}\:{think}\:{there}\:{is}\:{some}\:{technical}\:{problem} \\ $$$${in}\:{this}\:{app},\:{whenever}\:{i}\:{press}\:“\boldsymbol{{s}}{ort}\:{by} \\ $$$${recent}\:{activity}''\:{it}\:{gets}\:{me}\:{to}\:{same} \\ $$$${integral}\:{question}\:{everytime}…\left(\mathrm{75986}\right) \\ $$
Commented by mr W last updated on 24/Feb/20
i can′t help you.
$${i}\:{can}'{t}\:{help}\:{you}. \\ $$
Commented by mr W last updated on 26/Feb/20
both
$${both} \\ $$
Commented by Learner-123 last updated on 26/Feb/20
Are you referring to my doubt or  this technical glitch?
$${Are}\:{you}\:{referring}\:{to}\:{my}\:{doubt}\:{or} \\ $$$${this}\:{technical}\:{glitch}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *