Menu Close

A-complex-number-z-is-defined-by-z-1-2-cos-isin-such-that-z-n-1-2-n-cos-n-isin-n-Using-De-Moivre-s-theorem-or-otherwise-show-that-i-r-0-1-4-r-sin-2




Question Number 87497 by Rio Michael last updated on 04/Apr/20
A complex number z is defined by z = (1/2)(cos θ + isin θ),such that                z^n  = (1/2^n ) (cos nθ + isin nθ)  Using De Moivre′s theorem,or otherwise, show that    (i) Σ_(r=0) ^∞  (1/4^r ) sin 2rθ is a convergent geometic progression.  (ii) Σ_(r=0) ^∞ (1/4^r ) sin 2r = ((14 sin 2θ)/(17−16cos 2θ))
Acomplexnumberzisdefinedbyz=12(cosθ+isinθ),suchthatzn=12n(cosnθ+isinnθ)UsingDeMoivrestheorem,orotherwise,showthat(i)r=014rsin2rθisaconvergentgeometicprogression.(ii)r=014rsin2r=14sin2θ1716cos2θ

Leave a Reply

Your email address will not be published. Required fields are marked *