Menu Close

A-compound-pendulum-oscillates-though-a-small-angle-about-its-equilibrium-position-such-that-10a-d-dt-2-4g-cos-a-gt-0-its-period-is-A-2pi-5a-4g-B-2pi-5-a-g-




Question Number 84231 by Rio Michael last updated on 10/Mar/20
A compound pendulum oscillates though a  small angle θ about its equilibrium position  such that     10a((dθ/dt))^2  = 4g cos θ , a >0 . its period is   [A] 2π(√(((5a)/(4g))  ))   [B] ((2π)/5)(√(a/g))  [C] 2π(√(((2g)/(5a)) ))  [D] 2π(√((5a)/g))
$$\mathrm{A}\:\mathrm{compound}\:\mathrm{pendulum}\:\mathrm{oscillates}\:\mathrm{though}\:\mathrm{a} \\ $$$$\mathrm{small}\:\mathrm{angle}\:\theta\:\mathrm{about}\:\mathrm{its}\:\mathrm{equilibrium}\:\mathrm{position} \\ $$$$\mathrm{such}\:\mathrm{that} \\ $$$$\:\:\:\mathrm{10}{a}\left(\frac{{d}\theta}{{dt}}\right)^{\mathrm{2}} \:=\:\mathrm{4}{g}\:\mathrm{cos}\:\theta\:,\:{a}\:>\mathrm{0}\:.\:\mathrm{its}\:\mathrm{period}\:\mathrm{is}\: \\ $$$$\left[\mathrm{A}\right]\:\mathrm{2}\pi\sqrt{\frac{\mathrm{5}{a}}{\mathrm{4}{g}}\:\:}\:\:\:\left[\mathrm{B}\right]\:\frac{\mathrm{2}\pi}{\mathrm{5}}\sqrt{\frac{{a}}{{g}}}\:\:\left[\mathrm{C}\right]\:\mathrm{2}\pi\sqrt{\frac{\mathrm{2}{g}}{\mathrm{5}{a}}\:}\:\:\left[\mathrm{D}\right]\:\mathrm{2}\pi\sqrt{\frac{\mathrm{5}{a}}{{g}}}\: \\ $$
Answered by TANMAY PANACEA last updated on 10/Mar/20
(dθ/dt)=w=((2π)/T)→T=((2π)/w)  w^2 =((dθ/dt))^2 =((4g)/(10a))cosθ≈((4g)/(10a))×1  w=(√((2g)/(5a))) →T=((2π)/( (√((2g)/(5a)))))  T=2π×(√((5a)/(2g)))   → i think so
$$\frac{{d}\theta}{{dt}}={w}=\frac{\mathrm{2}\pi}{{T}}\rightarrow{T}=\frac{\mathrm{2}\pi}{{w}} \\ $$$${w}^{\mathrm{2}} =\left(\frac{{d}\theta}{{dt}}\right)^{\mathrm{2}} =\frac{\mathrm{4}{g}}{\mathrm{10}{a}}{cos}\theta\approx\frac{\mathrm{4}{g}}{\mathrm{10}{a}}×\mathrm{1} \\ $$$${w}=\sqrt{\frac{\mathrm{2}{g}}{\mathrm{5}{a}}}\:\rightarrow{T}=\frac{\mathrm{2}\pi}{\:\sqrt{\frac{\mathrm{2}{g}}{\mathrm{5}{a}}}} \\ $$$${T}=\mathrm{2}\pi×\sqrt{\frac{\mathrm{5}{a}}{\mathrm{2}{g}}}\:\:\:\rightarrow\:{i}\:{think}\:{so}\: \\ $$
Commented by Rio Michael last updated on 10/Mar/20
thanks,i′ve gotten the idea
$$\mathrm{thanks},{i}'\mathrm{ve}\:\mathrm{gotten}\:\mathrm{the}\:\mathrm{idea} \\ $$
Commented by mr W last updated on 11/Mar/20
answer is wrong sir!  ω here is not the angular velocity, i.e.  ω≠(dθ/dt)  ω is the angular frequency.  we know the angular velocity (dθ/dt) is  not constant, otherwise there is no  oscillation! but ω is a constant!  in fact ω here is defined as (√((elasticity)/(mass))).  please refer to your physics book.    correct answer:  10a((dθ/dt))^2 =4g cos θ  ⇒(dθ/dt)=(√((2g)/(5a)))×(√(cos θ))  ⇒(d^2 θ/dt^2 )=(√((2g)/(5a)))×((−sin θ)/(2(√(cos θ))))×(dθ/dt)  ⇒(d^2 θ/dt^2 )=(√((2g)/(5a)))×((−sin θ)/(2(√(cos θ))))×(√((2g)/(5a)))×(√(cos θ))  ⇒(d^2 θ/dt^2 )=−((g sin θ)/(5a))≈−(g/(5a))θ  ⇒(d^2 θ/dt^2 )+(g/(5a))θ=0  ⇒(d^2 θ/dt^2 )+ω^2 θ=0 with ω=(√(g/(5a)))  period T=((2π)/ω)=2π(√((5a)/g))  ⇒answer [D] is correct.
$${answer}\:{is}\:{wrong}\:{sir}! \\ $$$$\omega\:{here}\:{is}\:{not}\:{the}\:{angular}\:{velocity},\:{i}.{e}. \\ $$$$\omega\neq\frac{{d}\theta}{{dt}} \\ $$$$\omega\:{is}\:{the}\:{angular}\:{frequency}. \\ $$$${we}\:{know}\:{the}\:{angular}\:{velocity}\:\frac{{d}\theta}{{dt}}\:{is} \\ $$$${not}\:{constant},\:{otherwise}\:{there}\:{is}\:{no} \\ $$$${oscillation}!\:{but}\:\omega\:{is}\:{a}\:{constant}! \\ $$$${in}\:{fact}\:\omega\:{here}\:{is}\:{defined}\:{as}\:\sqrt{\frac{{elasticity}}{{mass}}}. \\ $$$${please}\:{refer}\:{to}\:{your}\:{physics}\:{book}. \\ $$$$ \\ $$$${correct}\:{answer}: \\ $$$$\mathrm{10}{a}\left(\frac{{d}\theta}{{dt}}\right)^{\mathrm{2}} =\mathrm{4}{g}\:\mathrm{cos}\:\theta \\ $$$$\Rightarrow\frac{{d}\theta}{{dt}}=\sqrt{\frac{\mathrm{2}{g}}{\mathrm{5}{a}}}×\sqrt{\mathrm{cos}\:\theta} \\ $$$$\Rightarrow\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }=\sqrt{\frac{\mathrm{2}{g}}{\mathrm{5}{a}}}×\frac{−\mathrm{sin}\:\theta}{\mathrm{2}\sqrt{\mathrm{cos}\:\theta}}×\frac{{d}\theta}{{dt}} \\ $$$$\Rightarrow\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }=\sqrt{\frac{\mathrm{2}{g}}{\mathrm{5}{a}}}×\frac{−\mathrm{sin}\:\theta}{\mathrm{2}\sqrt{\mathrm{cos}\:\theta}}×\sqrt{\frac{\mathrm{2}{g}}{\mathrm{5}{a}}}×\sqrt{\mathrm{cos}\:\theta} \\ $$$$\Rightarrow\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }=−\frac{{g}\:\mathrm{sin}\:\theta}{\mathrm{5}{a}}\approx−\frac{{g}}{\mathrm{5}{a}}\theta \\ $$$$\Rightarrow\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }+\frac{{g}}{\mathrm{5}{a}}\theta=\mathrm{0} \\ $$$$\Rightarrow\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }+\omega^{\mathrm{2}} \theta=\mathrm{0}\:{with}\:\omega=\sqrt{\frac{{g}}{\mathrm{5}{a}}} \\ $$$${period}\:{T}=\frac{\mathrm{2}\pi}{\omega}=\mathrm{2}\pi\sqrt{\frac{\mathrm{5}{a}}{{g}}} \\ $$$$\Rightarrow{answer}\:\left[{D}\right]\:{is}\:{correct}. \\ $$
Commented by TANMAY PANACEA last updated on 11/Mar/20
yes sir you are right...so pls ignore my post
$${yes}\:{sir}\:{you}\:{are}\:{right}…{so}\:{pls}\:{ignore}\:{my}\:{post} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *