Menu Close

A-convex-hexagon-is-given-in-which-any-two-opposite-sides-have-the-following-property-the-distance-between-their-midpoints-is-3-2-times-the-sum-of-their-lengths-Prove-that-the-hexagon-is-equian




Question Number 16737 by Tinkutara last updated on 26/Jun/17
A convex hexagon is given in which  any two opposite sides have the  following property: the distance  between their midpoints is ((√3)/2) times the  sum of their lengths. Prove that the  hexagon is equiangular.
$$\mathrm{A}\:\mathrm{convex}\:\mathrm{hexagon}\:\mathrm{is}\:\mathrm{given}\:\mathrm{in}\:\mathrm{which} \\ $$$$\mathrm{any}\:\mathrm{two}\:\mathrm{opposite}\:\mathrm{sides}\:\mathrm{have}\:\mathrm{the} \\ $$$$\mathrm{following}\:\mathrm{property}:\:\mathrm{the}\:\mathrm{distance} \\ $$$$\mathrm{between}\:\mathrm{their}\:\mathrm{midpoints}\:\mathrm{is}\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\mathrm{times}\:\mathrm{the} \\ $$$$\mathrm{sum}\:\mathrm{of}\:\mathrm{their}\:\mathrm{lengths}.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{hexagon}\:\mathrm{is}\:\mathrm{equiangular}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *