Menu Close

A-cord-is-drawn-at-random-in-a-given-circle-Whats-the-probability-p-that-the-cord-is-longer-than-the-side-of-an-inscribed-equilateral-triangle-in-the-circle-




Question Number 60000 by malwaan last updated on 16/May/19
A cord is drawn at random  in a given circle .  Whats the probability p that  the cord is longer than the side  of an inscribed equilateral   triangle in the circle?
$${A}\:{cord}\:{is}\:{drawn}\:{at}\:{random} \\ $$$${in}\:{a}\:{given}\:{circle}\:. \\ $$$${Whats}\:{the}\:{probability}\:\boldsymbol{{p}}\:{that} \\ $$$${the}\:{cord}\:{is}\:{longer}\:{than}\:{the}\:{side} \\ $$$${of}\:{an}\:{inscribed}\:{equilateral}\: \\ $$$${triangle}\:{in}\:{the}\:{circle}? \\ $$
Commented by mr W last updated on 16/May/19
(1/3)
$$\frac{\mathrm{1}}{\mathrm{3}} \\ $$
Commented by MJS last updated on 17/May/19
this is called Bertrand paradoxon. dependent  on the chosen method of randomization  we get p=1/2, 1/3 or 1/4. look it up!
$$\mathrm{this}\:\mathrm{is}\:\mathrm{called}\:\mathrm{Bertrand}\:\mathrm{paradoxon}.\:\mathrm{dependent} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{chosen}\:\mathrm{method}\:\mathrm{of}\:\mathrm{randomization} \\ $$$$\mathrm{we}\:\mathrm{get}\:{p}=\mathrm{1}/\mathrm{2},\:\mathrm{1}/\mathrm{3}\:\mathrm{or}\:\mathrm{1}/\mathrm{4}.\:\mathrm{look}\:\mathrm{it}\:\mathrm{up}! \\ $$
Commented by malwaan last updated on 17/May/19
but sir  what is the best one?
$${but}\:{sir} \\ $$$${what}\:{is}\:{the}\:{best}\:{one}? \\ $$
Commented by mr W last updated on 17/May/19
https://en.m.wikipedia.org/wiki/Bertrand_paradox_(probability)
Commented by MJS last updated on 17/May/19
there′s no best one. we cannot give an  answer. it′s undefined.
$$\mathrm{there}'\mathrm{s}\:\mathrm{no}\:\mathrm{best}\:\mathrm{one}.\:\mathrm{we}\:\mathrm{cannot}\:\mathrm{give}\:\mathrm{an} \\ $$$$\mathrm{answer}.\:\mathrm{it}'\mathrm{s}\:\mathrm{undefined}. \\ $$
Commented by mr W last updated on 17/May/19
I think the question is defined if it is:  Two points A and B are choosen at  random on a given circle.  What is the probability that the cord  AB is longer than l with 0<l<diameter.
$${I}\:{think}\:{the}\:{question}\:{is}\:{defined}\:{if}\:{it}\:{is}: \\ $$$${Two}\:{points}\:{A}\:{and}\:{B}\:{are}\:{choosen}\:{at} \\ $$$${random}\:{on}\:{a}\:{given}\:{circle}. \\ $$$${What}\:{is}\:{the}\:{probability}\:{that}\:{the}\:{cord} \\ $$$${AB}\:{is}\:{longer}\:{than}\:{l}\:{with}\:\mathrm{0}<{l}<{diameter}. \\ $$
Commented by MJS last updated on 17/May/19
yes. you have to define the method
$$\mathrm{yes}.\:\mathrm{you}\:\mathrm{have}\:\mathrm{to}\:\mathrm{define}\:\mathrm{the}\:\mathrm{method} \\ $$
Commented by ajfour last updated on 17/May/19
Commented by malwaan last updated on 18/May/19
whats the answer to your  method sir mr W ?
$${whats}\:{the}\:{answer}\:{to}\:{your} \\ $$$${method}\:{sir}\:{mr}\:{W}\:? \\ $$
Commented by mr W last updated on 18/May/19
the positions of A and B can be expressed  as θ_A  and θ_B . ∣θ_A −θ_B ∣ is equally   distributed over 0°−180°. the probability  for  ∣θ_A −θ_B ∣≥120° is therefore  ((180−120)/(180))=(1/3).
$${the}\:{positions}\:{of}\:{A}\:{and}\:{B}\:{can}\:{be}\:{expressed} \\ $$$${as}\:\theta_{{A}} \:{and}\:\theta_{{B}} .\:\mid\theta_{{A}} −\theta_{{B}} \mid\:{is}\:{equally}\: \\ $$$${distributed}\:{over}\:\mathrm{0}°−\mathrm{180}°.\:{the}\:{probability} \\ $$$${for}\:\:\mid\theta_{{A}} −\theta_{{B}} \mid\geqslant\mathrm{120}°\:{is}\:{therefore} \\ $$$$\frac{\mathrm{180}−\mathrm{120}}{\mathrm{180}}=\frac{\mathrm{1}}{\mathrm{3}}. \\ $$
Commented by malwaan last updated on 19/May/19
thank you sir
$${thank}\:{you}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *