Menu Close

a-cube-ABCD-EFGH-with-length-side-4-cm-Given-point-P-is-midpoint-EF-find-the-distance-of-line-AP-to-line-HB-




Question Number 103945 by bobhans last updated on 18/Jul/20
a cube ABCD.EFGH with length side  4 cm. Given point P is midpoint EF.  find the distance of line AP to line  HB.
acubeABCD.EFGHwithlengthside4cm.GivenpointPismidpointEF.findthedistanceoflineAPtolineHB.
Answered by bramlex last updated on 18/Jul/20
let : ax+by+cz = −1 be a  equation of plane HBP ′ where  BP ′ parallel to AP.   coordinates A(4,0,0) ; B(4,4,0)  ; P ′(4,6,4) and H(0,0,4)  (i)substitute B⇒4a+4b = −1  (ii) substitute H⇒4c = −1⇒c =−(1/4)  (iii) substitute P  ′⇒4a+6b+4c=−1⇒4a+6b = 0  substract (i) &(iii)   we get 2b = 1⇒b=(1/2) & a = −(3/4)  so eq of plane HBP ′ ⇒−(3/4)x+(1/2)y−(1/4)z+1=0  or −3x+2y−z+4 = 0  so the distance we desired is ((∣−12+4∣)/( (√(9+4+1))))  = (8/( (√(14)))) = ((4(√(14)))/7) cm. ■
let:ax+by+cz=1beaequationofplaneHBPwhereBPparalleltoAP.coordinatesA(4,0,0);B(4,4,0);P(4,6,4)andH(0,0,4)(i)substituteB4a+4b=1(ii)substituteH4c=1c=14(iii)substituteP4a+6b+4c=14a+6b=0substract(i)&(iii)weget2b=1b=12&a=34soeqofplaneHBP34x+12y14z+1=0or3x+2yz+4=0sothedistancewedesiredis12+49+4+1=814=4147cm.
Commented by bramlex last updated on 18/Jul/20
Commented by bobhans last updated on 18/Jul/20
waw...nice and cooll
wawniceandcooll
Answered by mr W last updated on 18/Jul/20
Commented by mr W last updated on 18/Jul/20
A(4,0,4)  P(4,2,0)  H(0,0,0)  B(4,4,4)  eqn. of AP=(4,0,4)+λ(0,1,−2)  eqn. of HB=(0,0,0)+μ(1,1,1)  a point on AP is S(4,λ,4−2λ)  a point on HB is T(μ,μ,μ)  let Φ=ST^2   Φ=(4−μ)^2 +(λ−μ)^2 +(4−2λ−μ)^2   (∂Φ/∂s)=2(λ−μ)+4(2λ+μ−4)=0  ⇒5λ+μ=8   ...(i)  (∂Φ/∂t)=−2(4−μ)−2(λ−μ)+2(2λ+μ−4)=0  ⇒λ+3μ=8   ...(ii)  ⇒λ=(8/7)  ⇒μ=((16)/7)  Φ_(min) =(4−((16)/7))^2 +((8/7)−((16)/7))^2 +(4−((16)/7)−((16)/7))^2 =((224)/(49))  min. distance from AP to HB is  ST_(min) =(√Φ_(min) )=(√((224)/(49)))=((4(√(14)))/7)
A(4,0,4)P(4,2,0)H(0,0,0)B(4,4,4)eqn.ofAP=(4,0,4)+λ(0,1,2)eqn.ofHB=(0,0,0)+μ(1,1,1)apointonAPisS(4,λ,42λ)apointonHBisT(μ,μ,μ)letΦ=ST2Φ=(4μ)2+(λμ)2+(42λμ)2Φs=2(λμ)+4(2λ+μ4)=05λ+μ=8(i)Φt=2(4μ)2(λμ)+2(2λ+μ4)=0λ+3μ=8(ii)λ=87μ=167Φmin=(4167)2+(87167)2+(4167167)2=22449min.distancefromAPtoHBisSTmin=Φmin=22449=4147
Commented by bobhans last updated on 18/Jul/20
what method it is sir?
whatmethoditissir?
Commented by bobhans last updated on 18/Jul/20
where become s(0,1,−2) sir
wherebecomes(0,1,2)sir
Commented by mr W last updated on 18/Jul/20
AP^(→) =(4−4,2−0,0−4)=(0,2,−4) or  (0,1,−2)
AP=(44,20,04)=(0,2,4)or(0,1,2)
Commented by bramlex last updated on 18/Jul/20
waw...great your method sir.
wawgreatyourmethodsir.

Leave a Reply

Your email address will not be published. Required fields are marked *