Menu Close

A-cube-of-unit-edge-length-is-held-before-a-plane-Prove-that-the-sum-of-the-squares-of-the-projected-lengths-of-edges-of-the-cube-on-the-plane-irrespective-of-the-orientation-of-the-cube-is-8-




Question Number 62121 by ajfour last updated on 16/Jun/19
A cube of unit edge length   is held before a plane. Prove that  the sum of the squares of the  projected lengths of edges of the cube  on the plane (irrespective of  the orientation of the cube) is 8.
Acubeofunitedgelengthisheldbeforeaplane.Provethatthesumofthesquaresoftheprojectedlengthsofedgesofthecubeontheplane(irrespectiveoftheorientationofthecube)is8.
Answered by mr W last updated on 16/Jun/19
Commented by mr W last updated on 16/Jun/19
say O1234567 is the unit cube.  say ABC is the plane with   A(a,0,0), B(0,b,0) and C(0,0,c)  eqn. of the plane is  (x/a)+(y/b)+(z/c)=1  n^→ =((1/a),(1/b),(1/c))  ∣n∣=(√((1/a^2 )+(1/b^2 )+(1/c^2 )))  for two points P(x_1 ,y_1 ,z_1 ) and Q(x_2 ,y_2 ,z_2 )  PQ^(→) =(Δx,Δy,Δz) with  Δx=x_2 −x_1 , Δy=y_2 −y_1 , Δz=z_2 −z_1   ∣PQ∣=(√((Δx)^2 +(Δy)^2 +(Δz)^2 ))  cos θ=((PQ^(→) .n^(→) )/(∣PQ∣×∣n∣))=((((Δx)/a)+((Δy)/b)+((Δz)/c))/( (√((Δx)^2 +(Δy)^2 +(Δz)^2 ))×(√((1/a^2 )+(1/b^2 )+(1/c^2 )))))  length of projection of PQ on plane is  ∣P′Q′∣=∣PQ∣sin θ  ⇒∣P′Q′∣^2 =∣PQ∣^2 sin^2  θ=∣PQ∣^2 (1−cos^2  θ)  ⇒∣P′Q′∣^2 =(Δx)^2 +(Δy)^2 +(Δz)^2 −(((((Δx)/a)+((Δy)/b)+((Δz)/c))^2 )/((1/a^2 )+(1/b^2 )+(1/c^2 )))  now we apply this for all 12 edges of the  unit cube.  edge O1=32=45=76:  (4 edges)  Δx=1, Δy=0, Δz=0  ∣O′1′∣^2 =1−((1/a^2 )/((1/a^2 )+(1/b^2 )+(1/c^2 )))    edge 12=O3=74=65:  (4 edges)  Δx=0, Δy=1, Δz=0  ∣1′2′∣^2 =1−((1/b^2 )/((1/a^2 )+(1/b^2 )+(1/c^2 )))    edge 25=34=O7=15:  (4 edges)  Δx=0, Δy=0, Δz=1  ∣2′5′∣^2 =1−((1/c^2 )/((1/a^2 )+(1/b^2 )+(1/c^2 )))    sum for all edges:  4(1−((1/a^2 )/((1/a^2 )+(1/b^2 )+(1/c^2 )))+1−((1/b^2 )/((1/a^2 )+(1/b^2 )+(1/c^2 )))+1−((1/c^2 )/((1/a^2 )+(1/b^2 )+(1/c^2 ))))  =4(3−(((1/a^2 )+(1/b^2 )+(1/c^2 ))/((1/a^2 )+(1/b^2 )+(1/c^2 ))))  =4(3−1)  =8  the result is independent from the  orientation of the plane.
sayO1234567istheunitcube.sayABCistheplanewithA(a,0,0),B(0,b,0)andC(0,0,c)eqn.oftheplaneisxa+yb+zc=1n=(1a,1b,1c)n∣=1a2+1b2+1c2fortwopointsP(x1,y1,z1)andQ(x2,y2,z2)PQ=(Δx,Δy,Δz)withΔx=x2x1,Δy=y2y1,Δz=z2z1PQ∣=(Δx)2+(Δy)2+(Δz)2cosθ=PQ.nPQ×n=Δxa+Δyb+Δzc(Δx)2+(Δy)2+(Δz)2×1a2+1b2+1c2lengthofprojectionofPQonplaneisPQ∣=∣PQsinθ⇒∣PQ2=∣PQ2sin2θ=∣PQ2(1cos2θ)⇒∣PQ2=(Δx)2+(Δy)2+(Δz)2(Δxa+Δyb+Δzc)21a2+1b2+1c2nowweapplythisforall12edgesoftheunitcube.edgeO1=32=45=76:(4edges)Δx=1,Δy=0,Δz=0O12=11a21a2+1b2+1c2edge12=O3=74=65:(4edges)Δx=0,Δy=1,Δz=0122=11b21a2+1b2+1c2edge25=34=O7=15:(4edges)Δx=0,Δy=0,Δz=1252=11c21a2+1b2+1c2sumforalledges:4(11a21a2+1b2+1c2+11b21a2+1b2+1c2+11c21a2+1b2+1c2)=4(31a2+1b2+1c21a2+1b2+1c2)=4(31)=8theresultisindependentfromtheorientationoftheplane.
Commented by ajfour last updated on 16/Jun/19
Thanks Sir, very brave!
ThanksSir,verybrave!
Answered by ajfour last updated on 16/Jun/19
Commented by ajfour last updated on 16/Jun/19
let a^� =cos θi^� +sin θk^�          b^� =cos φcos ψi^� +cos φsin ψj^�                 +sin φk^�       as  c^� = a^� ×b^�       c^� =−cos φsin ψsin θi^� +         (−sin φcos θ+cos φcos ψsin θ)j^�           +cos φsin ψcos θk^�   and as   a^� .b^� =0  ⇒    cos θcos φcos ψ+sin θsin φ=0                                                  ........(i)  let required sum be S.  S=4{cos^2 θ+cos^2 φcos^2 ψ+      cos^2 φsin^2 ψ+cos^2 φsin^2 ψsin^2 θ      +(−sin φcos θ+cos φcos ψsin θ)^2 }  ⇒ (S/4)=cos^2 θ+cos^2 φ+sin^2 θcos^2 φ                +sin^2 φcos^2 θ                 −2sin φcos φsin θcos θcos ψ      Now using (i)   (S/4)=cos^2 θ+cos^2 φ+sin^2 θcos^2 φ            +sin^2 φcos^2 θ+2sin^2 θsin^2 φ      (S/4) = cos^2 θ+cos^2 φ               +sin^2 θ−sin^2 θsin^2 φ               sin^2 φ−sin^2 φsin^2 θ               +2sin^2 θsin^2 φ     ⇒  (S/4) = 2      or   S=8 .
leta¯=cosθi^+sinθk^b¯=cosϕcosψi^+cosϕsinψj^+sinϕk^asc¯=a¯×b¯c¯=cosϕsinψsinθi^+(sinϕcosθ+cosϕcosψsinθ)j^+cosϕsinψcosθk^andasa¯.b¯=0cosθcosϕcosψ+sinθsinϕ=0..(i)letrequiredsumbeS.S=4{cos2θ+cos2ϕcos2ψ+cos2ϕsin2ψ+cos2ϕsin2ψsin2θ+(sinϕcosθ+cosϕcosψsinθ)2}S4=cos2θ+cos2ϕ+sin2θcos2ϕ+sin2ϕcos2θ2sinϕcosϕsinθcosθcosψNowusing(i)S4=cos2θ+cos2ϕ+sin2θcos2ϕ+sin2ϕcos2θ+2sin2θsin2ϕS4=cos2θ+cos2ϕ+sin2θsin2θsin2ϕsin2ϕsin2ϕsin2θ+2sin2θsin2ϕS4=2orS=8.
Commented by mr W last updated on 16/Jun/19
this is the way to prove i wished but  i could not carry out. thanks sir!
thisisthewaytoproveiwishedbuticouldnotcarryout.thankssir!
Commented by ajfour last updated on 16/Jun/19
i′m glad you like it, Sir. It   naturally turned easier than I  expected.
imgladyoulikeit,Sir.ItnaturallyturnedeasierthanIexpected.
Commented by mr W last updated on 16/Jun/19
this is my try using your method  without assuming that a^(→)  is in the  plane xz.  a^→ =(a_1 ,a_2 ,a_3 ) with a_1 ^2 +a_2 ^2 +a_3 ^3 =1  b^→ =(b_1 ,b_2 ,b_3 ) with b_1 ^2 +b_2 ^2 +b_3 ^3 =1  a^→ .b^→ =0  ⇒a_1 b_1 +a_2 b_2 +a_3 b_3 =0  ⇒a_1 b_1 +a_2 b_2 =−a_3 b_3     c^→ =a^→ ×b^→ =(a_2 b_3 −a_3 b_2 ,a_1 b_3 −a_3 b_1 ,a_1 b_2 −a_2 b_1 )  (S/4)=a_1 ^2 +a_2 ^2 +b_1 ^2 +b_2 ^2 +c_1 ^2 +c_2 ^2   =a_1 ^2 +a_2 ^2 +b_1 ^2 +b_2 ^2 +(a_2 b_3 −a_3 b_2 )^2 +(a_1 b_3 −a_3 b_1 )^2   =a_1 ^2 +a_2 ^2 +b_1 ^2 +b_2 ^2 +a_2 ^2 b_3 ^2 −2a_2 a_3 b_2 b_3 +a_3 ^2 b_2 ^2 +a_1 ^2 b_3 ^2 −2a_1 a_3 b_1 b_3 +a_3 ^2 b_1 ^2   =a_1 ^2 +a_2 ^2 +b_1 ^2 +b_2 ^2 +(a_1 ^2 +a_2 ^2 )b_3 ^2 −2(a_1 b_1 +a_2 b_2 )a_3 b_3 +a_3 ^2 (b_1 ^2 +b_2 ^2 )  =a_1 ^2 +a_2 ^2 +b_1 ^2 +b_2 ^2 +(a_1 ^2 +a_2 ^2 )b_3 ^2 +2a_3 ^2 b_3 ^2 +a_3 ^2 (b_1 ^2 +b_2 ^2 )  =a_1 ^2 +a_2 ^2 +b_1 ^2 +b_2 ^2 +(a_1 ^2 +a_2 ^2 +a_3 ^2 )b_3 ^2 +a_3 ^2 (b_1 ^2 +b_2 ^2 +b_3 ^2 )  =a_1 ^2 +a_2 ^2 +a_3 ^2 +b_1 ^2 +b_2 ^2 +b_3 ^2   =1+1  =2  ⇒S=2×4=8
thisismytryusingyourmethodwithoutassumingthataisintheplanexz.a=(a1,a2,a3)witha12+a22+a33=1b=(b1,b2,b3)withb12+b22+b33=1a.b=0a1b1+a2b2+a3b3=0a1b1+a2b2=a3b3c=a×b=(a2b3a3b2,a1b3a3b1,a1b2a2b1)S4=a12+a22+b12+b22+c12+c22=a12+a22+b12+b22+(a2b3a3b2)2+(a1b3a3b1)2=a12+a22+b12+b22+a22b322a2a3b2b3+a32b22+a12b322a1a3b1b3+a32b12=a12+a22+b12+b22+(a12+a22)b322(a1b1+a2b2)a3b3+a32(b12+b22)=a12+a22+b12+b22+(a12+a22)b32+2a32b32+a32(b12+b22)=a12+a22+b12+b22+(a12+a22+a32)b32+a32(b12+b22+b32)=a12+a22+a32+b12+b22+b32=1+1=2S=2×4=8
Commented by ajfour last updated on 16/Jun/19
It must have been possible, this  general way, & its not that lengthy  too, Nice Sir.
Itmusthavebeenpossible,thisgeneralway,&itsnotthatlengthytoo,NiceSir.

Leave a Reply

Your email address will not be published. Required fields are marked *