Question Number 62121 by ajfour last updated on 16/Jun/19
$${A}\:{cube}\:{of}\:{unit}\:{edge}\:{length}\: \\ $$$${is}\:{held}\:{before}\:{a}\:{plane}.\:{Prove}\:{that} \\ $$$${the}\:{sum}\:{of}\:{the}\:{squares}\:{of}\:{the} \\ $$$${projected}\:{lengths}\:{of}\:{edges}\:{of}\:{the}\:{cube} \\ $$$${on}\:{the}\:{plane}\:\left({irrespective}\:{of}\right. \\ $$$$\left.{the}\:{orientation}\:{of}\:{the}\:{cube}\right)\:{is}\:\mathrm{8}. \\ $$
Answered by mr W last updated on 16/Jun/19
Commented by mr W last updated on 16/Jun/19
$${say}\:{O}\mathrm{1234567}\:{is}\:{the}\:{unit}\:{cube}. \\ $$$${say}\:{ABC}\:{is}\:{the}\:{plane}\:{with}\: \\ $$$${A}\left({a},\mathrm{0},\mathrm{0}\right),\:{B}\left(\mathrm{0},{b},\mathrm{0}\right)\:{and}\:{C}\left(\mathrm{0},\mathrm{0},{c}\right) \\ $$$${eqn}.\:{of}\:{the}\:{plane}\:{is} \\ $$$$\frac{{x}}{{a}}+\frac{{y}}{{b}}+\frac{{z}}{{c}}=\mathrm{1} \\ $$$$\overset{\rightarrow} {{n}}=\left(\frac{\mathrm{1}}{{a}},\frac{\mathrm{1}}{{b}},\frac{\mathrm{1}}{{c}}\right) \\ $$$$\mid{n}\mid=\sqrt{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }} \\ $$$${for}\:{two}\:{points}\:{P}\left({x}_{\mathrm{1}} ,{y}_{\mathrm{1}} ,{z}_{\mathrm{1}} \right)\:{and}\:{Q}\left({x}_{\mathrm{2}} ,{y}_{\mathrm{2}} ,{z}_{\mathrm{2}} \right) \\ $$$$\overset{\rightarrow} {{PQ}}=\left(\Delta{x},\Delta{y},\Delta{z}\right)\:{with} \\ $$$$\Delta{x}={x}_{\mathrm{2}} −{x}_{\mathrm{1}} ,\:\Delta{y}={y}_{\mathrm{2}} −{y}_{\mathrm{1}} ,\:\Delta{z}={z}_{\mathrm{2}} −{z}_{\mathrm{1}} \\ $$$$\mid{PQ}\mid=\sqrt{\left(\Delta{x}\right)^{\mathrm{2}} +\left(\Delta{y}\right)^{\mathrm{2}} +\left(\Delta{z}\right)^{\mathrm{2}} } \\ $$$$\mathrm{cos}\:\theta=\frac{\overset{\rightarrow} {{PQ}}.\overset{\rightarrow} {{n}}}{\mid{PQ}\mid×\mid{n}\mid}=\frac{\frac{\Delta{x}}{{a}}+\frac{\Delta{y}}{{b}}+\frac{\Delta{z}}{{c}}}{\:\sqrt{\left(\Delta{x}\right)^{\mathrm{2}} +\left(\Delta{y}\right)^{\mathrm{2}} +\left(\Delta{z}\right)^{\mathrm{2}} }×\sqrt{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}} \\ $$$${length}\:{of}\:{projection}\:{of}\:{PQ}\:{on}\:{plane}\:{is} \\ $$$$\mid{P}'{Q}'\mid=\mid{PQ}\mid\mathrm{sin}\:\theta \\ $$$$\Rightarrow\mid{P}'{Q}'\mid^{\mathrm{2}} =\mid{PQ}\mid^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta=\mid{PQ}\mid^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:\theta\right) \\ $$$$\Rightarrow\mid{P}'{Q}'\mid^{\mathrm{2}} =\left(\Delta{x}\right)^{\mathrm{2}} +\left(\Delta{y}\right)^{\mathrm{2}} +\left(\Delta{z}\right)^{\mathrm{2}} −\frac{\left(\frac{\Delta{x}}{{a}}+\frac{\Delta{y}}{{b}}+\frac{\Delta{z}}{{c}}\right)^{\mathrm{2}} }{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }} \\ $$$${now}\:{we}\:{apply}\:{this}\:{for}\:{all}\:\mathrm{12}\:{edges}\:{of}\:{the} \\ $$$${unit}\:{cube}. \\ $$$${edge}\:{O}\mathrm{1}=\mathrm{32}=\mathrm{45}=\mathrm{76}:\:\:\left(\mathrm{4}\:{edges}\right) \\ $$$$\Delta{x}=\mathrm{1},\:\Delta{y}=\mathrm{0},\:\Delta{z}=\mathrm{0} \\ $$$$\mid{O}'\mathrm{1}'\mid^{\mathrm{2}} =\mathrm{1}−\frac{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }}{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }} \\ $$$$ \\ $$$${edge}\:\mathrm{12}={O}\mathrm{3}=\mathrm{74}=\mathrm{65}:\:\:\left(\mathrm{4}\:{edges}\right) \\ $$$$\Delta{x}=\mathrm{0},\:\Delta{y}=\mathrm{1},\:\Delta{z}=\mathrm{0} \\ $$$$\mid\mathrm{1}'\mathrm{2}'\mid^{\mathrm{2}} =\mathrm{1}−\frac{\frac{\mathrm{1}}{{b}^{\mathrm{2}} }}{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }} \\ $$$$ \\ $$$${edge}\:\mathrm{25}=\mathrm{34}={O}\mathrm{7}=\mathrm{15}:\:\:\left(\mathrm{4}\:{edges}\right) \\ $$$$\Delta{x}=\mathrm{0},\:\Delta{y}=\mathrm{0},\:\Delta{z}=\mathrm{1} \\ $$$$\mid\mathrm{2}'\mathrm{5}'\mid^{\mathrm{2}} =\mathrm{1}−\frac{\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }} \\ $$$$ \\ $$$${sum}\:{for}\:{all}\:{edges}: \\ $$$$\mathrm{4}\left(\mathrm{1}−\frac{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }}{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}+\mathrm{1}−\frac{\frac{\mathrm{1}}{{b}^{\mathrm{2}} }}{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}+\mathrm{1}−\frac{\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}\right) \\ $$$$=\mathrm{4}\left(\mathrm{3}−\frac{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}\right) \\ $$$$=\mathrm{4}\left(\mathrm{3}−\mathrm{1}\right) \\ $$$$=\mathrm{8} \\ $$$${the}\:{result}\:{is}\:{independent}\:{from}\:{the} \\ $$$${orientation}\:{of}\:{the}\:{plane}. \\ $$
Commented by ajfour last updated on 16/Jun/19
$${Thanks}\:{Sir},\:{very}\:{brave}! \\ $$
Answered by ajfour last updated on 16/Jun/19
Commented by ajfour last updated on 16/Jun/19