Menu Close

A-cubical-block-of-ice-of-mass-m-and-edge-L-is-placed-in-a-large-tray-of-mass-M-If-the-ice-block-melts-how-far-does-the-centre-of-mass-of-the-system-ice-tray-come-down-a-ml-m-M-b-2ml-




Question Number 61205 by necx1 last updated on 30/May/19
A cubical block of ice of mass m and  edge L is placed in a large tray of mass  M.If the ice block melts,how far does  the centre of mass of the system “ice + tray”  come down ?    a)((ml)/(m+M))  b)((2ml)/(m+M))  c)((ml)/(2(m+M)))  d)none
$${A}\:{cubical}\:{block}\:{of}\:{ice}\:{of}\:{mass}\:{m}\:{and} \\ $$$${edge}\:{L}\:{is}\:{placed}\:{in}\:{a}\:{large}\:{tray}\:{of}\:{mass} \\ $$$${M}.{If}\:{the}\:{ice}\:{block}\:{melts},{how}\:{far}\:{does} \\ $$$${the}\:{centre}\:{of}\:{mass}\:{of}\:{the}\:{system}\:“{ice}\:+\:{tray}'' \\ $$$${come}\:{down}\:? \\ $$$$ \\ $$$$\left.{a}\left.\right)\left.\frac{{ml}}{{m}+{M}}\left.\:\:{b}\right)\frac{\mathrm{2}{ml}}{{m}+{M}}\:\:{c}\right)\frac{{ml}}{\mathrm{2}\left({m}+{M}\right)}\:\:{d}\right){none} \\ $$
Commented by necx1 last updated on 30/May/19
Commented by mr W last updated on 30/May/19
c) is right.
$$\left.{c}\right)\:{is}\:{right}. \\ $$
Commented by necx1 last updated on 30/May/19
please show workings
$${please}\:{show}\:{workings} \\ $$
Commented by mr W last updated on 30/May/19
tray is large and thin, height of its  center of mass is ≈0.  ice block has a height of L, the height  its center of mass is (L/2).  the height of the com of  “ice+tray”  before melting is ((0×M+(L/2)×m)/(M+m))=((mL)/(2(M+m))).  after melting ice becomes water which  is distributed over the tray as thin  water film whose height of com is ≈0.  thus the change of com of the system  ice+tray is from ((mL)/(2(M+m))) to 0.
$${tray}\:{is}\:{large}\:{and}\:{thin},\:{height}\:{of}\:{its} \\ $$$${center}\:{of}\:{mass}\:{is}\:\approx\mathrm{0}. \\ $$$${ice}\:{block}\:{has}\:{a}\:{height}\:{of}\:{L},\:{the}\:{height} \\ $$$${its}\:{center}\:{of}\:{mass}\:{is}\:\frac{{L}}{\mathrm{2}}. \\ $$$${the}\:{height}\:{of}\:{the}\:{com}\:{of}\:\:“{ice}+{tray}'' \\ $$$${before}\:{melting}\:{is}\:\frac{\mathrm{0}×{M}+\frac{{L}}{\mathrm{2}}×{m}}{{M}+{m}}=\frac{{mL}}{\mathrm{2}\left({M}+{m}\right)}. \\ $$$${after}\:{melting}\:{ice}\:{becomes}\:{water}\:{which} \\ $$$${is}\:{distributed}\:{over}\:{the}\:{tray}\:{as}\:{thin} \\ $$$${water}\:{film}\:{whose}\:{height}\:{of}\:{com}\:{is}\:\approx\mathrm{0}. \\ $$$${thus}\:{the}\:{change}\:{of}\:{com}\:{of}\:{the}\:{system} \\ $$$${ice}+{tray}\:{is}\:{from}\:\frac{{mL}}{\mathrm{2}\left({M}+{m}\right)}\:{to}\:\mathrm{0}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *