Menu Close

A-curve-has-equation-y-2-x-4-The-normal-at-point-P-1-1-and-the-normal-at-point-Q-9-1-intersect-at-the-point-R-What-are-coordinates-at-point-R-




Question Number 128521 by bramlexs22 last updated on 08/Jan/21
A curve has equation y = (2−(√x) )^4   The normal at point P(1,1) and  the normal at point Q(9,1) intersect  at the point R. What are coordinates  at point R?
Acurvehasequationy=(2x)4ThenormalatpointP(1,1)andthenormalatpointQ(9,1)intersectatthepointR.WhatarecoordinatesatpointR?
Answered by mr W last updated on 08/Jan/21
(dy/dx)=4(2−(√x))^3 (−(1/(2(√x))))=−((2(2−(√x))^3 )/( (√x)))  at P(1,1):  (dy/dx)=−2  eqn. of normal:  y=1+(1/2)(x−1)=((x+1)/2)  at Q(9,1)  (dy/dx)=(2/3)  eqn. of normal:  y=1−(3/2)(x−9)=((−3x+29)/2)  intersection:  y=((x+1)/2)=((−3x+29)/2)  ⇒x=7  ⇒y=4  ⇒R(7,4)
dydx=4(2x)3(12x)=2(2x)3xatP(1,1):dydx=2eqn.ofnormal:y=1+12(x1)=x+12atQ(9,1)dydx=23eqn.ofnormal:y=132(x9)=3x+292intersection:y=x+12=3x+292x=7y=4R(7,4)
Commented by mr W last updated on 08/Jan/21
Commented by bramlexs22 last updated on 08/Jan/21
great sir. thank you
greatsir.thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *