Menu Close

A-cyclist-is-travelling-down-a-hill-at-a-speed-of-9-2m-s-The-hillside-makes-an-angle-of-6-3-with-the-horizontal-Calculate-for-the-cyclist-i-the-vertical-speed-ii-horizontal-speed-




Question Number 31143 by NECx last updated on 03/Mar/18
A cyclist is travelling down a  hill at a speed of 9.2m/s . The  hillside makes an angle of 6.3°  with the horizontal .Calculate,  for the cyclist:  (i)the vertical speed  (ii)horizontal speed
$${A}\:{cyclist}\:{is}\:{travelling}\:{down}\:{a} \\ $$$${hill}\:{at}\:{a}\:{speed}\:{of}\:\mathrm{9}.\mathrm{2}{m}/{s}\:.\:{The} \\ $$$${hillside}\:{makes}\:{an}\:{angle}\:{of}\:\mathrm{6}.\mathrm{3}° \\ $$$${with}\:{the}\:{horizontal}\:.{Calculate}, \\ $$$${for}\:{the}\:{cyclist}: \\ $$$$\left({i}\right){the}\:{vertical}\:{speed} \\ $$$$\left({ii}\right){horizontal}\:{speed} \\ $$
Answered by MJS last updated on 03/Mar/18
it′s just a rectangular triangle  a^2 +b^2 =9.2^2   α=6.3°  β=(90−6.3)°=83.7°  γ=90°  (a/(sin α))=(b/(sin β))=  a=c×sin α  b=c×sin β=c×cos α  a=9.2sin 6.3=1.009 555... vertical speed  b=9.2cos 6.3=9.144 440... horizontal speed
$$\mathrm{it}'\mathrm{s}\:\mathrm{just}\:\mathrm{a}\:\mathrm{rectangular}\:\mathrm{triangle} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{9}.\mathrm{2}^{\mathrm{2}} \\ $$$$\alpha=\mathrm{6}.\mathrm{3}° \\ $$$$\beta=\left(\mathrm{90}−\mathrm{6}.\mathrm{3}\right)°=\mathrm{83}.\mathrm{7}° \\ $$$$\gamma=\mathrm{90}° \\ $$$$\frac{{a}}{\mathrm{sin}\:\alpha}=\frac{{b}}{\mathrm{sin}\:\beta}= \\ $$$${a}={c}×\mathrm{sin}\:\alpha \\ $$$${b}={c}×\mathrm{sin}\:\beta={c}×\mathrm{cos}\:\alpha \\ $$$${a}=\mathrm{9}.\mathrm{2sin}\:\mathrm{6}.\mathrm{3}=\mathrm{1}.\mathrm{009}\:\mathrm{555}…\:\mathrm{vertical}\:\mathrm{speed} \\ $$$${b}=\mathrm{9}.\mathrm{2cos}\:\mathrm{6}.\mathrm{3}=\mathrm{9}.\mathrm{144}\:\mathrm{440}…\:\mathrm{horizontal}\:\mathrm{speed} \\ $$
Commented by NECx last updated on 03/Mar/18
Thank you so much.
$${Thank}\:{you}\:{so}\:{much}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *